第46回豐島廃棄物等管理委員会次第

日時 平成29年7月9日(日)13:00~ 場所 直島町総合福祉センター

- I 開会
- Ⅱ 審議・報告事項
 - 1 豊島廃棄物等の最終の処理済み量及び副成物等の現在の状況(報告)
 - 2 豊島廃棄物等処理事業の実施状況
 - (1) 豊島廃棄物等処理事業の実施状況(報告)
 - (2) 豊島廃棄物等処理事業の原単位表等(報告)
 - 3 豊島処分地の地下水浄化対策
 - (1) 第27回豊島処分地排水・地下水等対策検討会の審議概要(報告)
 - (2) D測線西側の油混じり水等の処理(審議)
 - 4 処分地内のつぼ掘り部の整地とトレンチドレーンの撤去等への対応(審議)
 - 5 中間処理施設等の最近のトラブルと対応(報告)
 - 6 副成物の有効利用
 - (1) 溶融スラグの品質試験結果(報告)
 - (2) 溶融スラグを使用したコンクリート構造物のモニタリング計画 (審議)
 - 7 豊島の中間保管・梱包施設、特殊前処理物処理施設及び直島の中間処理施設等の撤去等
 - (1) 堆積物の除去・除染の業務委託先の決定(報告)
 - (2) 堆積物の除去・除染の実施状況(報告)
 - (3) 施設の撤去等に係る環境計測の実施計画(報告)
 - 8 豊島廃棄物等処理事業フォローアップ委員会の設置要綱等(審議)
 - 9 その他
 - (1) 環境計測及び周辺環境モニタリングの結果(報告)
 - (2) 緊急時等の報告(正式評価)(報告)
 - (3) 健康管理委員会の審議概要(報告)
- Ⅲ 閉会

豊島廃棄物等の最終の処理済み量及び副成物等の現在の状況

1. 概要

直島中間処理施設において廃棄物等の処理が平成 29 年 6 月 12 日に完了し、豊島・直島施設のピット内にある廃棄物等の固着物の処理が 6 月末に完了したことから最終の処理済み量を報告する。また、処理完了に伴い、中間処理(焼却・溶融処理)の過程で生成される副成物の発生が確定したことから副成物等の現在の状況について報告する。

2. 廃棄物等の最終の処理済み量

(1) 6月12日までの処理済み量

平成 15 年度に開始した廃棄物等の処理について、6 月 12 日までの処理済み量を表 1 のとおり年度ごとに取りまとめた。廃棄物等の処理済み重量は 911,054t となった。

表 1 処理実績

						表 1	7/07	里美領	/.\						
								重量	(t)						
			溶融炉			キルン炉		岩石等			下土壤等	<u> </u>	.i. #1	特殊前処	A =1
	年 度	廃棄物等	土壌主体 廃棄物	計	溶融 不要物	土壌主体 廃棄物	計	特殊前 処理	小計	セメント 原料化	地下水 浄化	溶融処理	小計	理物等委 託処理	合計
15	9月~翌年3月 (試運転を含む)	_	1	26,472	136	ı	136	73	26,681	0	0	0	0	_	26,681
16	4月~翌年3月	_	1	52,243	836	1	836	219	53,298	0	0	0	0	_	53,298
17	4月~翌年3月	_	1	53,186	759	1	759	81	54,026	0	0	0	0	_	54,026
18	4月~翌年3月	1	l	51,261	936	1	936	24	52,221	0	0	0	0	1	52,221
19	4月~翌年3月	_	I	53,183	1,027	1	1,027	17	54,227	0	0	0	0	1	54,227
20	4月~翌年3月	47,186	11,797	58,983	900	621	1,521	93	60,597	0	0	0	0	1	60,597
21	4月~翌年3月	50,920	15,210	66,130	1,195	2,690	3,885	138	70,153	0	0	0	0	_	70,153
22	4月~翌年3月	51,490	17,163	68,653	1,679	4,410	6,089	201	74,943	0	0	0	0	_	74,943
23	4月~翌年3月	48,951	16,230	65,181	1,904	3,634	5,538	276	70,995	0	0	0	0	1	70,995
24	4月~翌年3月	49,248	15,809	65,057	1,823	3,815	5,638	257	70,952	647	0	0	647	_	71,599
25	4月~翌年3月	54,110	17,275	71,385	2,420	2,565	4,985	705	77,075	3,579	0	0	3,579	_	80,654
26	4月~翌年3月	32,565	28,419	60,984	2,336	4,157	6,493	980	68,457	2,598	0	(274)	2,872	1	71,055
27	4月~翌年3月	17,761	45,671	63,432	4,366	2,093	6,459	856	70,747	1,946	0	(264)	2,210	210	72,903
28	4月~翌年3月	11,761	57,422	69,183	6,369	636	7,005	1,283	77,471	1,719	0	0	1,719	91	79,281
29	4月~6月12日	0	15,126	15,126	1,078	0	1,078	1	16,203	2,217	1	-	2,217	1	18,420
	合 計			840,459			52,385	5,203	898,046	12,707	0	(538)	13,245	301	911,054

(2) 6月末までの固着物の処理済み量

豊島・直島施設のピット内にある廃棄物等の固着物の処理済み量は表 2 に示す。廃棄物等の 処理済み重量は 1,319t となった。

		区分	重量(t)
	固着	物処理済み量	1, 319
廃棄物等	内	豊島側	(588)
物等	訳	直島側	(731)
		計	1, 319

表 2 固着物処理済み量

(3) 測量の結果

これまで場内移動分(掘削された廃棄物等)の処理済み体積は、地山に換算(掘削された廃棄物等の体積から体積変化率で除算)して算出していたが、体積変化率が若干正確性を欠いたものであるため、最終の処理済み体積は、平成 14 年 3 月までに実施した暫定的な環境保全措置の地形図(平成 16 年 6 月測量)を基に、3D モデルを用いて算出したところ、廃棄物等の処理済み体積は、表 3 のとおり 609,132m³となった。

 区分
 体積 (m³)

 掘削前
 H16/6測量

 掘削完了
 H29/1測量

表 3 処理対象体積

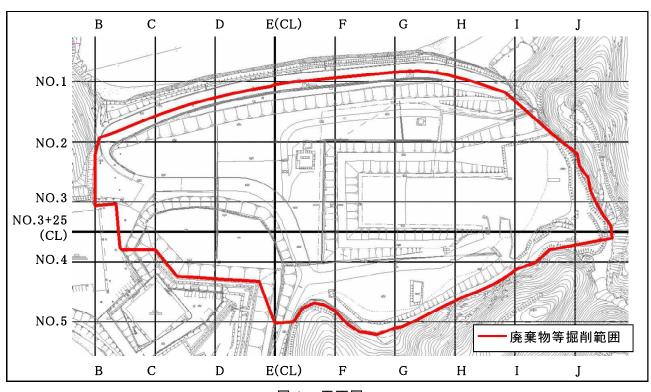


図1 平面図

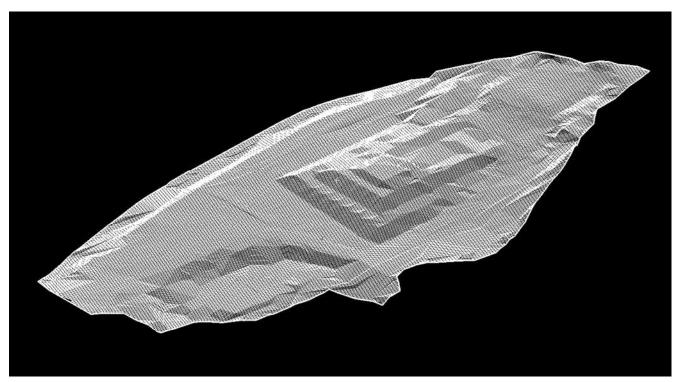


図2 掘削前地形図

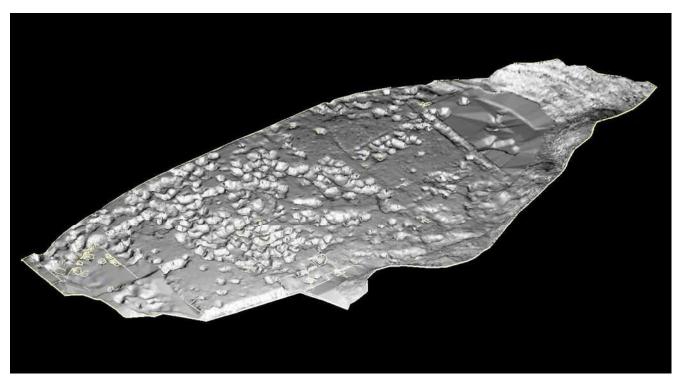


図3 掘削完了地形図

(4)全体の処理済み量

平成 29 年 6 月 12 日までの処理済み量とその後のピット内固着物の処理済み量を合わせた廃棄物等の処理済み量に汚染土壌を加えた全体の処理済み量を表 4 に示す。廃棄物等の処理済み体積は、616,525 m^3 、処理済み重量は、912,373 t となり平成 11 年 5 月の公調委調査から廃棄物等 365,768t 増、直下土壌 109,605t 減、総重量 256,163t の増となった。

表 4 全体処理済み量

	区分		体積 (m³)	重量(t)	備考
		6月12日までの処理済み量	COO 122	897, 809	
	廃棄物等	ピット内固着物	609, 132	1, 319	
廃棄物等処理済み量		小計	609, 132	899, 128	
		直下土壌	7, 393	13, 245	
		計	616, 525	912, 373	
		廃棄物等	477, 600	533, 360	平成7年9月に公調委が実施した調査結果
平成11年5月公調委 調査による廃棄物等 処理対象量		直下土壌	70, 200	122, 850	より廃棄物等を算出したものから、その 後覆土等及び汚染土壌の判定基準を土壌 環境基準に変更した汚染土壌量等を増加
		計	547,800	656, 210	したもの
		廃棄物等	[+131, 532]	[+365, 768]	
公調委との差		直下土壌	[-62, 807]	[-109, 605]	
		計	[+68, 725]	[+256, 163]	

^{※ []} 内数値は、廃棄物等処理量と平成 11 年 5 月公調委調査による廃棄物等処理対象量 との差を表した数値である。

3. 副成物等の現在の状況

(1)溶融スラグ

溶融スラグは、定期的にサンプリングし、安全性検査と品質検査等を実施し、基準に合格したものを各スラグステーションへ搬出し、土木用材料として公共工事で有効利用している。

現在、直島環境センター、各スラグステーションに保管されている溶融スラグは表 5 のとおり約 56,000t あり、これまでの販売実績を考慮すると平成 31 年度中までの販売となる。

表 5 各スラグステーションの保管量(平成 29 年 6 月 30 日現在)

保管場所	在庫量	備考
直島	3,000 t	高松スラグステーションの保管容量と調整しながら 搬出する。
坂出スラグステーション	1,423 t	平成29年8月頃販売完了予定。9月以降は、仮囲い等の施設撤去を行う。 坂出スラグステーションの廃止に伴い、中讃・西讃地区の公共工事では、高松スラグステーションの溶融スラグを使用することとし、引き続き県内全域で溶融スラグを使用していく。
高松スラグステーション	50,563 t	現在、保管容量いっぱいの状況である。今後は、販売状況を見ながら直島環境センターに保管されている溶融スラグを搬入する。 これまでの販売実績を考慮すると平成31年度中に販売完了予定。
オリーブスラグステーション	650 t	直島環境センターに保管されている溶融スラグを搬入するが、直島環境センターに保管されている溶融スラグがなくなれば、高松スラグステーションにある溶融スラグを搬入し、引き続き溶融スラグを使用していく。 これまでの販売実績を考慮すると平成31年度中に販売完了予定。
合 計	55,636 t	

(2)溶融スラグ以外の副成物

直島環境センター内には、溶融スラグの他に粗大スラグ、仮置き土、シルト状スラグが保管 されている。

粗大スラグは約 8,100t、仮置き土は約 2,600t が保管されており、三菱マテリアル㈱九州工場の保管容量と調整しながら平成 29 年 8 月以降、海上輸送しセメント原料化を行う。

またシルト状スラグは約 800t 保管されており、三菱マテリアル㈱九州工場へ陸上輸送し、セメント原料化を行い、有効利用を図る。

なお、鉄・銅・アルミ・溶融飛灰・清掃ダストは随時有効利用しており、保管されているものはない。

(3) 地下水対策で対応している汚染土壌

豊島処分地では、地下水位面より下方にある土壌の汚染は地下水浄化対策として一体的に対応することとなっている。

現在、D 測線西側においては、地下水基準水位である TP1.3m まで地盤を下げたうえで地下水揚水浄化を行っている。また、D 測線西側以外のエリアにおいても、地下水基準水位までの汚染土壌の掘削を行い、それより下方を地下水対策として対応している箇所がある。

資料 46・Ⅱ/2-1 平成 29 年 7 月 9 日

豊島廃棄物等処理事業の実施状況(平成29年5月末まで)

1. 豊島廃棄物等の処理量について

①豊島廃棄物等の処理量

平成29年6月12日までの豊島廃棄物等の処理実績は、下表1-1及び1-2のとおりである。なお、直島の一般廃棄物は除いている。

表 1-1 (平成15~28年度)

	区分	計運転 (4月~ 9月17日)	丰度 本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	試運転~ 28年度 小計	29年度 4月~ 6/12 小計	累計(暫定) 平成29年6月12日 まで
処理	計画 ①	-	35,420	60,000	60,000	60,000	62,500	62,000	71,560	71,097	71,713	71,785	73,711	64,629	64,641	72,406	901,462	11,336	
	溶融炉処理計画		35,420	60,000	60,000	60,000	62,500	59,000	63,860	64,890	65,625	67,470	68,083	60,040	59,064	65,932	851,884	10,504	
	(うち、直下土壌)	-	1	-	_	1	I	_	1	-	-	1	(1,300)	(2,400)	(186)	(0)	(3,886)	(0)	
	キルン炉処理計画	_	_	-	-	_	ı	3,000	7,200	6,000	5,980	4,200	5,499	4,326	5,321	6,254	47,780	832	
	岩石等特殊前処理計画	_	_	-	-	_	-	-	500	207	108	115	129	263	256	220	1,798	0	
年間	処理実績(中間処理)②	14,629	11,979	53,079	53,945	52,197	54,210	60,504	70,015	74,742	70,719	70,695	76,370	67,477	69,891	76,188	876,640	16,203	892,844
	溶融炉処理実績	14,539	11,933	52,243	53,186	51,261	53,183	58,983	66,130	68,653	65,181	65,057	71,385	60,984	63,432	69,183	825,333	15,126	840,459
	(うち、直下土壌)	_	_	-	-	-	-	-	_	_	-	-	_	(274)	(264)	_	(538)	(0)	(538)
	キルン炉処理実績	90	46	836	759	936	1,027	1,521	3,885	6,089	5,538	5,638	4,985	6,493	6,459	7,005	51,307	1,078	52,385
	うち、仮置土処理実績	_	-	-	_	_	_	(621)	(2,690)	(4,410)	(3,634)	(3,815)	(2,565)	(4,157)	(2,093)	(636)	(24,622)	0	(24,622)
岩石	等特殊前処理 ③	10	63	219	81	24	17	93	138	201	276	257	705	980	856	1,283	5,203	0	5,203
処理	!量合計	14,639	12,042	53,298	54,026	52,221	54,227	60,597	70,153	74,943	70,995	70,952	77,075	68,457	70,747	77,471	881,843	16,203	898,046
溶融	炉処理量/溶融炉処理計画量	74	.7%	87.1%	88.6%	85.4%	85.1%	100.0%	103.6%	105.8%	99.3%	96.4%	104.8%	101.6%	107.4%	104.9%	96.9%	144.0%	97.5%
キル	ン炉処理量/キルン炉処理計画量	-	_	_	-	_	_	50.7%	54.0%	101.5%	92.6%	134.2%	90.7%	150.1%	121.4%	112.0%	107.4%	129.5%	107.8%
2	処理量合計④/処理計画量①	75	.3%	88.8%	90.0%	87.0%	86.8%	97.7%	98.0%	105.4%	99.0%	98.8%	104.6%	105.9%	109.4%	107.0%	97.8%	142.9%	98.4%
処	L理量合計④/全体量(898,347t)	3.	0%	5.9%	6.0%	5.8%	6.0%	6.7%	7.8%	8.3%	7.9%	7.9%	8.6%	7.6%	7.9%	8.6%	98.2%	1.8%	100.0%
	掘削量(m³)					315,159					41,762	57,181	52,750	46,780	42,486		556,118	_	#NACOE!
	密度(t/m³)					1.42					1.70	1.24	1.47	1.48	1.67	1.58	1.46	_	
直下	汚染土壌処理実績(セメント原	料化処理に	=限る。)																
処理	計画 ⑤	_	-	-	-	_	-	-	_	-	-	6,000	7,500	23,800	14,300	4,354	55,954	0	
直下	土壌等委託処理実績 ⑥	_	_	_	-	-	-	-	_	-	-	647	3,579	2,598	1,946	1,719	10,489	2,217	12,707
処	L理量合計(⑥)/処理計画量(⑤)	-	-	_	-	-	-	-	_	-	-	10.8%	47.7%	10.9%	13.6%	39.5%	18.7%	#DIV/0!	22.7%
処	4理量合計(⑥)/全体量(12,707t)	-	-	_	-	-	_	-	_	_	-	5.1%	28.2%	20.4%	15.3%	13.5%	82.5%	17.4%	100.0%
	掘削量(㎡)	-	_	-	-	_	-	-	_	_	-	385	2,130	1,342	1,275	2,261	7,393	_	#V+ILUE!
	密度(t/m³)	-	_	-	-	_	_	-	-	_	-	1.68	1.68	1.94	1.83	1.74	1.79	_	
特殊	前処理物等委託処理実績																		
特殊	前処理物等委託処理実績 ⑦	_	_	_	_	_	_	_	_	_	_	-	_	_	210	91	301	0	301
全体	処理実績																		
処理	計画(全体) ⑧ (①+⑤)	0	35,420	60,000	60,000	60,000	62,500	62,000	71,560	71,097	71,713	77,785	81,211	88,429	78,941	76,760	957,416	11,336	
処理	!量合計 ⑨ (④+⑥+⑦)	14,639	12,042	53,298	54,026	52,221	54,227	60,597	70,153	74,943	70,995	71,599	80,654	71,055	72,903	79,281	892,634	18,420	911,054
合計	·(9)/処理計画量(®)	75	.3%	88.8%	90.0%	87.0%	86.8%	97.7%	98.0%	105.4%	99.0%	92.1%	99.3%	80.4%	92.4%	103.3%	93.2%	162.5%	94.0%
	合計(⑨)/全体量(911,054t)	2.	9%	5.9%	5.9%	5.7%	6.0%	6.7%	7.7%	8.2%	7.8%	7.9%	8.9%	7.8%	8.0%	8.7%	98.0%	2.0%	100.0%
	掘削量(m)			·		315,159		·			41,762	57,566	54,880	48,122	43,761		561,250		

¹⁾直下土壌等処理には、重金属のみに汚染された覆土を含む。

²⁾ 直下土壌等処理のうち、中間処理施設にて溶融処理を要するダイオキシン等が完了判定基準を超過した汚染土壌は中間処理の溶融炉処理計画及び実績に含む。

表 1-2 (平成<mark>29年度)</mark> (単位:t)

秋 I Z (下次 23 十尺)															(+ 12.6)
	試運転~							29年度							田 31 (書記さ)
区分	28年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4月~ 6/12 小計	累計(暫定) 平成29年6月12日 まで
処理計画 ①	901,462	5,232	6,104	3,590										11,336	
溶融炉処理計画	851,884	4,848	5,656	3,334										10,504	
(うち、直下土壌)	(3,886)	-	-	-										(0)	
キルン炉処理計画	47,780	384	448	256										832	
岩石等特殊前処理計画	1,798	_	_	_										0	
年間処理実績(中間処理) ②	876,640	6,513	7,373	2,318										16,203	892,844
溶融炉処理実績	825,333	6,048	6,872	2,205										15,126	840,459
(うち、直下土壌)	(538)	0	0	0										(0)	(538)
キルン炉処理実績	51,307	464	501	112										1,078	52,385
うち、仮置土処理実績	(24,622)	(0)	(0)	(0)										(0)	(24,622)
岩石等特殊前処理 ③	5,203	0	0	0										0	5,203
処理量合計 ④=②+③	881,843	6,513	7,373	2,318	0	0	0	0	0	0	0	0	0	16,203	898,046
溶融炉処理量/溶融炉処理計画量	96.9%	124.8%	121.5%	66.1%										144.0%	97.5%
キルン炉処理量/キルン炉処理計画量	107.4%	120.9%	111.9%	43.9%										129.5%	107.8%
処理量合計④/処理計画量①	97.8%	124.5%	120.8%	64.6%										142.9%	98.4%
処理量合計④/全体量(898,347t)	98.2%	0.7%	0.8%	0.3%										1.8%	100.0%
掘削量(㎡)	556,118	1	-	_										_	#YALUE!
密度(t/m³)	1.46	ı	-	_										_	
直下汚染土壌処理実績(セメント原	料化処理に	:限る。)													
処理計画 ⑤	55,954	0	0	0										0	
直下土壌等委託処理実績 ⑥	10,489	1,507	710	0										2,217	12,707
処理量合計(⑥)/処理計画量(⑤)	18.7%	-	-	_										#DIV/0!	22.7%
処理量合計(⑥)/全体量(12,707t)	82.5%	11.9%	5.6%	0.0%										17.4%	100.0%
掘削量(㎡)	7,393	ı	-	_										_	#V/AEUE!
密度(t/m³)	1.79	1	-	-										_	
特殊前処理物等委託処理実績	•														
特殊前処理物等委託処理実績 ⑦	301	0	0	0										0	301
全体処理実績															
処理計画(全体) ⑧ (①+⑤)	957,416	5,232	6,104	3,590										11,336	
処理量合計	892,634	8,020	8,083	2,318										18,420	911,054
合計(⑨)/処理計画量(⑧)	93.2%	153.3%	132.4%	64.6%										162.5%	94.0%
合計(⑨)/全体量(911,054t)	98.0%	0.9%	0.9%	0.3%										2.0%	100.0%
掘削量(m))	561,250														

②中間処理施設処理分 搬出量、積込量及び輸送量

平成29年3月までの掘削現場からの搬出量、中間保管・梱包施設での積込量及び陸上・海上輸送量の実績は、下表2のとおりである。

表 2 (平成15~28年度)

	区分	15 ^左 試運転 (4月~ 9月17日)	F <u>度</u> 本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	試運転~ 28年度 小計	累計 29年3月末まで
	処理計画量	_	35,420	60,000	60,000	60,000	62,500	62,000	71,560	71,097	71,713	71,785	73,711	64,629	64,641	72,406	901,462	901,462
	掘削現場からの搬出量	16,831	10,420	46,900	51,020	49,800	53,746	62,910	70,002	71,506	70,438	72,190	77,396	64,242	72,807	77,676	867,884	867,884
	うち、仮置土搬出量	-	ı	ı	l	_	I	(1,850)	(4,147)	(5,010)	(4,438)	(5,130)	(3,260)	(4,817)	(2,090)	(4,585)	(35,327)	(35,327)
- 少生	積込量	15,253	11,213	49,917	51,870	50,090	53,191	60,354	69,351	71,858	69,496	72,787	78,199	63,979	69,718	81,005	868,281	868,281
実績	うち、仮置土積込量	=	-	ı	ı	-	ı	(699)	(2,661)	(4,446)	(3,581)	(4,207)	(2,562)	(4,039)	(2,133)	(5,170)	(29,498)	(29,498)
	輸送量	15,147	11,200	49,820	51,817	50,031	53,281	60,346	69,284	71,956	69,535	72,739	78,038	64,237	68,925	80,778	867,134	867,134
	うち、仮置土輸送量	-	-	-	_	_	-	(698)	(2,660)	(4,557)	(3,578)	(4,204)	(2,557)	(4,019)	(2,122)	(5,135)	(29,529)	(29,529)

¹⁾ 掘削現場からの搬出量とは、掘削現場で廃棄物等をトラックに積み込む際に、トラクタショベルに取り付けた重量測定装置で計量したものである。

²⁾ 積込量とは中間保管・梱包施設でダンプトラックに積込時にトラックスケールで計量したもので、輸送量とは中間処理施設の受入ピットのトラックスケールで計量したものである。

³⁾ 仮置き土搬出量、積込量、輸送量とは、ロータリーキルン炉で高温熱処理(平成21年2月開始)するために搬出、積込、輸送した仮置き土の数値(量)である。

③直下土壤等 島外処理搬出量、輸送量、処理量等

平成 29 年 5 月までの掘削現場からの搬出量、積替施設からの輸送量、島外処理量、溶融処理対象となった量、非汚染土壌量、掘削対象外土壌量の 実績は、下表のとおりである。

表 3 (平成24~28年度) (単位:t)

									試運転~							29年	度						累計
		区分		24年度	25年度	26年度	27年度	28年度	28年度 小計	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	29年5月末 まで
		処理計	· · 	6,000	7,500	23,800	14,300	4,354	55,954	0	0											0	55,954
			掘削現場からの搬出量→島 外処理確定量	528	0	1,590	837	309	3,264													0	3,264
計画		島外処理対象土壌	輸送量	138	390	1,284	1,142	309	3,264													0	3,264
範	et de		委託処理済量	104	424	1,284	1,142	309	3,264													0	3,264
囲内	実績	焼却•溶融処理対象土	· 接量	0	0	0	0	0	0													0	0
		掘削対象外土壌	非汚染土壌量	2,572	0	9,273	17,562	7,729	37,136													0	37,136
		掘削刈家外工場	地下水浄化対象土壌量	0	0	0	0	0	0													0	0
			掘削現場からの搬出量→島 外処理確定量	3,698	0	1,534	633	3,578	9,443													0	9,443
計		島外処理対象土壌	輸送量	1,158	2,540	1,314	804	3,627	9,443													0	9,443
画範	実績		委託処理済量	543	3,155	1,314	804	1,410	7,226	1,507	710											2,217	9,443
囲外		焼却•溶融処理対象土	· 察量	0	0	274	264	0	538													0	538
		掘削対象外土壌	地下水浄化対象土壌量	0	0	0	0	0	0													0	0
			掘削現場からの搬出量→島 外処理確定量	4,226	0	3,123	1,470	3,888	12,707													0	12,707
		島外処理対象土壌	輸送量	1,296	2,930	2,598	1,946	3,936	12,707													0	12,707
∄ I.	#1		委託処理済量	647	3,579	2,598	1,946	1,719	10,490	1,507	710											2,217	12,707
計	実績	焼却・溶融処理対象土	海量	0	0	274	264	0	538													0	538
		掘削対象外土壌	非汚染土壤量	2,572	0	9,273	17,562	7,729	37,136													0	37,136
	拢	加刊刘家介工樓	地下水浄化対象土壌量	0	0	0	0	0	0													0	0

- 1)計画範囲内とは、公害等調整委員会の調査結果と、県が平成23年3~6月に行った測量結果に基づき推計した直下汚染土壌量である。
- 2)計画範囲内の処理計画量について、平成24年度の6,000トンは密度2.24t/m³(サンプル調査結果)、平成25年度以降は処理実績から密度を、平成25、26年度は1.68t/m³、平成27年度は9月までは1.77 t/m³、10月以降平成28年9月までは1.81 t/m³、平成28年10月以降は1.83 t/m³としたものである。
- 3) 実績は、実測に基づく量である。
- 4) 輸送量とは、積替え施設に運搬する際にトラックスケールで計量したものである。
- 5) 島外委託処理済量とは、島外処理委託業者から処理完了の報告のあったものである。
- 6) 溶融処理対象量とは、溶融処理を要するダイオキシン等が完了判定基準を超過した汚染土壌である。
- 7)計画範囲内の掘削対象外土壌のうち、完了判定の基準を満たした土壌量は非汚染土壌量に、また、地下水等の浄化対策で処理を要するVOCsが第二溶出量基準以下の汚染土壌は地下水浄化対象土壌量としている。

4 特殊前処理物の処理量

平成29年3月までの特殊前処理物処理施設等における処理実績は、下表4のとおりである。

表 4 (平成15~28年度)

		15 ⁴	丰度														= b veride-	
	区分	試 運 転 (4月 ~ 9月17日)	本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	試運転~ 28年度 小計	累計 29年3月末まで
	岩石及び コンクリート(t)	9.00	62.75	199.91	74.80	20.60	16.32	80.48	103.51	104.06	266.76	251.36	677.15	962.72	835.14	1,271.37	4,935.93	4,935.93
	金属物(t)	1.16	0.00	18.73	6.61	2.98	1.11	12.33	3.75	8.40	8.99	5.73	7.94	9.59	20.92	11.87	120.11	120.11
処理 実績	ケーブル屑(t)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.83	88.42	0.00	0.00	19.57	7.36	0.00	0.00	146.18	146.18
	ドラム缶(本)	2	142	102	105	59	0	142	11	56	86	111	96	227	273	45	1,457	1,457.00
	可燃物(t)	29.92	188.79	629.46	440.77	281.90	184.81	215.62	153.86	407.89	321.85	366.05	294.54	260.55	140.19	93.83	4,010.03	4,010.03
	低濃度 ラガーロープ(t)	-	_	_	_	_	_	_	_	_	_	_	_	_	30.72	43.51	74.23	74.23
委託	汚染物 ロール状 廃棄物(t)	_	_	ı	-	ı	1	1	ı	_	_	_	ı	ı	2.47	0.10	2.57	2.57
安 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ラガーロープ (金属くず) (t)	_	_	1	_	1	1	ı	ı	_	_	_	ı	ı	_	21.34	21.34	0.00
八顺	ロール状廃棄物(t)	_	_	_	_	-	-	_	-	_	_	_	-	-	9.52	0.00	9.52	9.52
	空ドラム缶(t)	_	_	_	_	_	_	_	_	_	_	_	_	_	167.15	25.53	192.68	192.68

¹⁾ケーブル屑は、平成20年度までは、溶融不要物としてキルン炉で処理。平成21年度以降は、特殊前処理物処理施設で洗浄後、金属リサイクル業者において有効利用。平成21年及び22年度の処理量は、特殊前処理物処理施設で洗浄完了した時点で計上しており、平成23年度以降は、処理委託の完了報告を受けた時点で計上している。

²⁾ 処理実績のドラム缶本数は、特殊前処理物処理施設で充填作業を行った2重ドラム缶の本数である。

³⁾ 委託処理実績は、平成27年8月以降の処理量である。

5施設撤去等に伴う処理量

平成29年5月までの施設撤去等に伴う処理実績は、下表のとおりである。

表 5-1 (平成15~29年度)

(単位:t)

	区分		平成1 試 運 転 (4月 ~ 9月17日)	5年度 本格稼動後 (9月18日 ~3月)	平成16年度	平成17年度	平成18年度	平成19年度	平成20年度	平成21年度	平成22年度	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度	試運転~ 28年度 小計	29年度 4~5月 小計	累計 29年5月末まで
	アスファルト売	投(t)		_	_	_	_	ı	_	-	_		-	1	101.42	116.73	341.26	559.41	0.00	559.41
	コンクリート殻	殳(t)	_	_	_	_		ı	_	_	_	_	_	1	-	231.87	360.32	592.19	0.00	592.19
	がれき類(トレ ン)(t)	ンンチドレー	_	_	_	_		-	_	_	_	_	_	-	_	587.62	1,940.34	2,527.96	0.00	2,527.96
処理	シート類(t)		1	_	_	_	1	l	_	_	-	1	_	ı	l	79.17	16.28	95.45	0.00	95.45
実績	フレコン袋(t)		_	_	_	ı	ı	_	_	_	ı	_	ı	ı	45.30	0.00	45.30	0.00	45.3
	単管(t)	有効利用	_	_	_	_	_	ı	_	_	_	_	_	-	-	0.00	0.00	0.00	0.00	0.00
		委託処理	1	_	_	_		1	_	_		1	_	1	1	9.06	2.84	11.90	0.00	11.90
	空きドラム缶 ラム) (t)	(3001オーパート゚		_	_	_		ı	_	_	_	ı	_	1	ı	1	10.18	10.18	0.00	0.00

- 1)アスファルト設は平成27年1月以降、コンクリート設は平成28年1月以降の処理量である。
- 2)シート類、フレコン袋、単管は、平成27年8月以降の処理量である。
- 3)がれき類(トレンチドレーン)は平成28年3月以降の処理量である。

表 5-2 (29年度)

			平成1	5年度								29年度							
	区分		試 運 転 (4月 ~ 9月17日)	本格稼動後 (9月18日 ~3月)	試運転~ 28年度 小計	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	累計 29年5月末まで
	アスファルト売	设(t)	1		559.41	_	_											0.00	559.41
	コンクリート売	殳(t)	1		592.19	_	_											0.00	592.19
	がれき類(トレ ン)(t)	ンンチドレー	1		2,527.96	_	_											0.00	2,527.96
処理	シート類(t)		1		95.45	_	_											0.00	95.45
実績	処理 実績 フレコン袋(t) 単管(t))	1		45.30	_	_											0.00	45.3
		有効利用	1		0.00	_	_											0.00	0.00
		委託処理	1	_	11.90	_	_											0.00	11.90
		(3001オーハ・ート・	_	_	10.18	_	_											0.00	0.00

6副成物の有効利用量

平成29年5月までの副成物の発生量及び販売量など有効利用の実績は、下表6-1及び6-2のとおりである。

表 6-1 (平成15~28年度)

			15年	度														試運転~	29年度	累計
	区	分	試運転 (4月~ 9月17日)	本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	28年度	4~5月 小計	ポリ 29年5月末 まで
	鉄	発生量	10.0	6.2	305.7	323.2	345.5	321.3	368.4	546.1	672.8	643.9	613.3	625.5	661.3	538.0	322.1	6,303.3	52.5	6,355.8
	#7	販売量	9.8	0.0	312.1	296.8	333.8	353.3	366.5	383.7	517.6	444.5	423.5	525.3	620.0	488.0	35.0	5,109.9	0.0	5,109.9
	अंग	発生量	161.9	111.1	404.8	450.4	625.7	518.6	492.2	608.6	790.2	850.6	966.4	1,070.9	1,542.5	937.0	593.2	10,124.1	86.3	10,210.4
	3170	販売量	161.9	0.0	505.8	457.3	628.9	507.3	502.3	598.7	741.6	781.9	904.6	955.3	1,376.4	850.7	478.5	9,451.2	0.0	9,451.2
		発生量	31.0	57.1	48.3	58.1	58.1	215.1	232.3	409.2	291.4	418.4	494.8	487.7	1,266.3	1,310.3	253.6	5,631.7	0.0	5,631.7
		再選別除去量	0.0	0.0	0.0	0.0	158.5	107.7	38.2	0.0	0.0	0.0	0.0	1,094.6	1,671.4	1,591.8	957.7	5,619.9	0.0	5,619.9
		鉄(強磁性)	_	_	_	_				_	_	_	_	158.1	149.5	110.5	79.2		0.0	
	アルミ	鉄(弱磁性)												30.2	42.2	37.8	32.0		0.0	
		スラゲ	-	_	-	_				_	_	_	_	906.3	1,479.7	1,443.6	843.6		0.0	
		再選別アルミ量		-	-	-				_		_	-	40.7	40.9	29.2	19.4		0.0	
		販売量	30.5	0.0	0.0	0.0	15.6	0.0	43.2	28.9	0.0	0.0	0.0	32.8	39.6	31.5	20.2	242.3	0.0	242.3
	溶融飛灰	発生量	587.0	593.0	2,404.0	2,354.7	1,888.1	2,038.0	2,119.5	2,413.9	2,862.5	2,501.3	2,662.2	2,377.9	2,212.6	2,314.8	2,218.2	31,547.7	453.8	32,001.5
		処理量	587.0	593.0	2,404.0	2,354.7	1,888.1	2,038.0	2,119.5	2,413.9	2,862.5	2,501.3	2,662.2	2,377.9	2,212.6	2,314.8	2,218.2	31,547.7	453.8	32,001.5
実績		発生量	1,942.5	9,152.0	32,398.5	34,705.8	32,114.4	31,428.2	30,751.4	34,851.1	33,842.6	34,708.6	33,949.5	38,016.1	34,784.6	38,311.0	41,206.1	462,162.4	8,559.3	470,721.7
		用 無筋構造物用生コン	0.0	0.0	13,852.8	30,913.3	33,326.5	24,547.9	26,565.5	27,721.4	26,393.3	23,661.8	30,875.9	31,161.4	27,167.5	23,423.3	20,670.0	340,280.6	2,441.5	342,722.1
	溶融スラグ	途 コンクリート二次製品	0.0	0.0	2,391.9	1,159.8	4,337.7	2,462.4	2,976.2	3,555.5	2,794.4	2,932.8	3,013.9	2,390.7	1,921.3	1,378.4	1,577.2	32,892.2	311.8	33,204.0
		合計販売量	0.0	0.0	16,244.7	32,073.1	37,664.2	27,010.3	29,541.7	31,276.9	29,187.7	26,594.6	33,889.8	33,552.1	29,088.8	24,801.7	22,247.2	373,172.8	2,753.3	375,926.1
		処理量	_	_	_	_	_	_	_	_		_	_	_	1,503.8	385.4	3,334.4	5,223.6	0.0	5,223.6
	粗大スラグ	発生量	-	-	-	_	1,068.6	2,322.9	5,977.5	6,590.8	5,471.9	5,779.8	5,681.7	7,983.9	11,861.7	13,563.5	23,794.4	90,096.7	2,569.8	92,666.5
	(粗大スラグの販売量 は、溶融スラグの販売量 に含まれる。)	販売量	_	-	-	_	(1,068.6)	(2,272.9)	(4,654.7)	(4,664.2)	(3,845.1)	(4,609.2)	(3,146.6)	(6,277.1)	(0)	(0)	(0)	(30,538.4)	(0)	(30,538.4)
	11 344 25, 7	処理量	-	_	-	_	-	-	-	1,993.1	2,771.0	1,179.8	1,946.1	1,839.3	11,199.4	13,031.5	26,072.8	60,033.0	852.2	60,885.2
	シルト状スラグ	発生量	_	_	-	_	159.1	1,400.0	3,073.9	4,552.4	5,093.3	4,037.9	3,657.0	3,754.0	4,447.9	4,382.3	3,300.8	37,858.6	752.1	38,610.7
		処理量	_	_	-	_	0.0	1,400.1	2,467.3	4,343.3	4,698.1	3,961.7	3,545.2	3,058.6	4,101.3	3,741.0	2,874.4	34,191.0	421.1	34,612.1
	清掃ダスト	発生量		-	_	_	88.2	79.5	175.4	82.0	95.6	61.8	69.3	62.5	54.1	56.5	56.2	881.1	0.0	881.1
		処理量	_	_	_	_	0.0	167.7	96.8	126.7	129.5	61.8	41.7	43.2	46.2	58.3	107.8	879.7	0.0	879.7
	仮置土	発生量	_	-	-	-	-	_	621.0	2,690.0	4,410.4	3,633.5	4,095.9	2,564.6	4,157.4	2,093.4	630.3	24,896.5	0.0	24,896.5
	Art Ard	処理量	—	_		_	— — — — — — — — — — — — — — — — — — —		_	2,961.9	4,590.5	3,762.6	4,008.0	2,531.6	5,357.8	5,076.6	5,223.0	33,512.0	0.0	33,512.0

- 1) 鉄、銅、アルミは一般競争入札により販売。アルミの再選別除去量とは、1次発生したアルミの純度を上げるために、平成18年度~20年度はバッチ処理により、平成25年度からはアルミ選別設備(試運転期間を含む)により、アルミと鉄とスラグに再選別し、除去した鉄とスラグの総量である。なお、再選別除去量について、平成18年度~20年度は鉄とスラグに分けた内訳量を統計していなかったが、25年7月からは鉄とスラグを分けて統計している。また、鉄については、平成25年9月19日以降は強磁性と弱磁性に分けて統計しているが、それ以前(7月~9月18日)は、強磁性にまとめて記載している。再選別した鉄はそのまま副成物(鉄)として取扱い、スラグは、平成18年度~20年度は再溶融処理、平成25年度からはセメント原料として有効利用した。
- 2) 溶融スラグは、上記販売量のほか、試験研究のために2,858.8トン(試運転~平成29年5月)使用した。
- 3) 溶融スラグの処理量とは、安全性検査又は品質検査で基準を満たさないスラグを粗大スラグと混合し、セメントの原料として有効利用した量である。
- 4) 粗大スラグ、シルト状スラグ、清掃ダストの発生量・販売量・処理量は、処理量対策として再溶融を止め、有効利用を開始した以降の数値を記載している。
- 5) 粗大スラグは、混合比を発生量に対してその75%、50%、25%混合したアルカリシリカ反応性試験を実施し、合格したものを平成18年10月から平成26年3月まで有 効利用しており、その販売量は溶融スラグの合計販売量の(内数)である。なお、水分の蒸発等により、発生量と販売量・処理量の計は合致しない。
- 6) 粗大スラグの処理量とは、製砂スラグに混合できない粗大スラグを製錬珪砂代替品(平成21年度)やセメントの原料(平成22年度~)として有効利用した量である。
- 7) 仮置土の処理量とは、ロータリーキルン炉により高温熱処理した仮置土をセメントの原料として有効利用した量である。
- 8) 不溶化ダストは平成19年10月から溶融飛灰と一緒に処理しており、その発生量・処理量とも溶融飛灰に含まれる。

表 6-2 (平成<mark>29</mark>年度) (単位:t)

			試運転~							29年度	Ę						累計
	X	分	28年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	29年5月末 まで
	鉄	発生量	6,303.3	24.3	28.3											52.5	6,355.8
	坎	販売量	5,109.9	0.0	0.0											0.0	5,109.9
	銅	発生量	10,124.1	38.9	47.4											86.3	10,210.4
	3411	販売量	9,451.2	0.0	0.0											0.0	9,451.2
		発生量	5,631.7	0.0	0.0											0.0	5,631.7
		再選別除去量	5,619.9	0.0	0.0											0.0	5,619.9
		鉄(強磁性) 内		0.0	0.0											0.0	
	アルミ	鉄(弱磁性) 訳		0.0	0.0											0.0	
		スラグ		0.0	0.0											0.0	
		再選別アルミ量		0.0	0.0											0.0	
		販売量	242.3	0.0	0.0											0.0	242.3
	溶融飛灰	発生量	31,547.7	207.5	246.3											453.8	32,001.5
	PH-HBA/19//	処理量	31,547.7	207.5	246.3											453.8	32,001.5
実績		発生量	462,162.4	3,878.4	4,680.9											8,559.3	470,721.7
		用 無筋構造物用生コン	340,280.6	850.4	1,591.1	******************										2,441.5	342,722.1
	溶融スラグ	途 コンクリート二次製品	32,892.2	140.7	171.1											311.8	33,204.0
		合計販売量	373,172.8	991.1	1,762.2											2,753.3	375,926.1
		処理量	5,223.6	_	_											0.0	5,223.6
	粗大スラグ	発生量	90,096.7	1,292.1	1,277.7											2,569.8	92,666.5
	(粗大スラグの販売量 は、溶融スラグの販売量	販売量	(30,538.4)	(0)	(0)											(0)	(30,538.4)
	に含まれる。)	処理量	60,033.0	852.2	0.0											852.2	60,885.2
	シルト状スラグ	発生量	37,858.6	327.3	424.7											752.1	38,610.7
	274140000	処理量	34,191.0	192.3	228.9											421.1	34,612.1
	清掃ダスト	発生量	881.1	0.0	0.0											0.0	881.1
	(日)加入 5.41.	処理量	879.7	0.0	0.0											0.0	879.7
	仮置土	発生量	24,896.5	0.0	0.0											0.0	24,896.5
	MET	処理量	33,512.0	0.0	0.0											0.0	33,512.0

⑦高度排水処理施設の処理量

平成29年5月までの高度排水処理施設の処理実績は、下表7-1及び7-2のとおりである。

表 7 -1 (平成15~29年度)

(単位: m³)

	区分	計 運 転 (4月~ 9月17日)	丰度 本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	試運転~ 28年度 小計	29年度 4~5月 小計	累計 29年5月末まで
	計画量	10,075	14,910	22,490	22,945	22,165	22,360	22,360	20,345	21,905	21,905	27,040	26,720	27,360	27,040	27,040	336,660	4,560	341,220
	処理量	9,660	13,089	22,807	23,074	24,105	23,979	23,073	23,878	23,623	25,519	27,188	26,264	27,557	29,130	27,978	350,924	2,660	353,585
実績	海域への放流量	9,515	12,426	20,858	20,054	22,676	21,563	20,406	20,509	20,430	24,288	24,203	23,346	24,503	27,050	25,806	317,633	2,576	320,209
	散水等への利用量	145	663	1,949	3,020	1,429	2,416	2,667	3,369	3,193	1,231	2,985	2,918	3,054	2,080	2,172	33,291	84	33,376

¹⁾ 散水等への利用量とは、処理水を場内の粉塵抑制のための散水や特殊前処理物の洗浄用水としての利用量をいう。

表 7 -2 (平成29年度)

(単位: m³)

		試運転~							29年度							累計
	区分	28年度 小計	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	29年5月末まで
	計画量	336,660	2,080	2,480	2,000	2,480	2,480	2,400	2,480	2,400	2,200	2,200	1,360	2,480	4,560	341,220
	処理量	350,924	1,715	946											2,660	353,585
実績	海域への放流量	317,633	1,665	911											2,576	320,209
	散水等への利用量	33,291	50	35											84	33,376

¹⁾²月の計画量は、定期点検整備のため少なくなっている。

²⁾ 高度排水処理施設の処理量は平成23年11月18日以降、65 m²/日から80 m²/日に変更した。

8凝集膜分離装置の処理量

平成29年5月までの凝集膜分離装置の処理実績は、下表のとおりである。

表 8 (平成23~29年度)

(単位: m³)

														29年度							mai .
	区分	23年度	24年度	25年度	26年度	27年度	28年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	累計 29年5月末まで
	計画量	1,970	5,688	3,850	10,400	8,500	8,500	0	1,250	1,250	1,250	500	1,250	1,250	750	500	0	0	500	1,250	40,158
実績	処理量(西海岸放流量)	2,223	5,690	8,278	1,306	4,625	4,813	0	0											0	26,935

¹⁾ 平成 24 年 2 月 15 日から稼動。

9活性炭吸着塔の処理量

平成29年5月までの活性炭吸着塔の処理実績は、下表のとおりである。

表 9 (平成25~29年度)

(単位: m³)

												29年度							29年度	⊞∌I
	区分	25年度	26年度	27年度	28年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	4~5月 小計	累計 29年5月末まで
	計画量		12,000	13,000	13,000	0	0	4,000	0	0	5,000	4,000	0	0	0	0	0	0	0	38,000
実績	処理量(西海岸放流量)	1,192	2,890	5,911	9,511	0	0											0	0	19,504

¹⁾ 平成 26 年 3 月 19 日から稼動。

⑩加圧浮上装置の処理量

平成29年5月までの加圧浮上装置の処理実績は、下表のとおりである。

表 10 (26~29年度)

(単位: m³)

	σΛ	26年度	27年度	28年度							29年度							累計
	区分	20 年度	21 平及	26年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	・ 29年5月末 まで
de vie	処理量	4.5	800.8	2,741.1	0.0	0.0											0.0	3,546.4
実績	うち、高度排水処理施設の既 設処理工程の前処理量	(4.5)	(106.4)	(22.8)	(0.0)	(0.0)											(0.0)	(133.7)

¹⁾ 平成 27 年 2 月 10 日から稼動。

2. モニタリング等の実施状況

平成29年7月8日までのモニタリング等の計画及び実績は、下表のとおりである。

表 11

												2	9年度															
	項目		4	月	5	月	6	月	7	月	8	月	9.	月	10	月	11	月	12	月	1.	月	2	月	3	月	備老	
			計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	計画	実績	即用 7つ	
	沈砂池1	放流口水質													0												放流の都度実施。年1回全項目	
	沈砂池2	放流口水質	0						0						0						0						年1回全項目	
##																												
理境計測		大気汚染															0										気象については、必要に応じて適宜実施	
24-26 B 1 7/01		騒音															0											
	掘削·運搬	振動															0											
																	0											
		地下水	0	0	0	0	0	0	0		0		0		0		0		0		0		0		0		○は水位測定、◎は合わせて水質分析も実施	
島	晋 1音エータいっか。	水質汚濁			0	0					0						0				0						水質は年4回、底質は年1回(夏季)	
16) 12.39	泉・見 モーブリンク	生態系					0																0					
実際監視 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □														Ф		Φ												
	·	定期監視			(Φ				Φ				Ф				Φ				Φ		○はダイオキシン類、粉塵、◎は合わせて重金属等も実	施
個人暴露量 → →													Φ				Φ				Ф				Ф			
作業環境測定	福州・連維 日 日 日 日 日 日 日 日 日																											
	振舟 連維 日本 日本 日本 日本 日本 日本 日本 日																											
指用・運搬																												
##### ###############################																												
	指称・連接																											
					0	•			0				0				0				0				0			
1=1축 =1 214	中国加莱克	煙突 (CO)	+			$+$ \square							連続	測定												•		
课·規訂 /州	中间处理他故				O 2	•			O ₁				0								O 2				O 1		○1:1号炉煙突、○2:2号炉煙突	
									0																		大雨が長く続き、雨水を海域へ排出する場合(年	1回)
						•																					必要に応じて実施	
島		大気汚染											0														環境計測の敷地境界(最大着地点)と兼ねる	
周辺環	環境モニタリンク	排水口 水質·底質									0																	
		最大着地点 土壌																									数年(3年を日安)に1回、前回は25年度	
		常時監視	0	0	0	0	0	0	0		0		0		0		0		0		0		0		0			
化类理性测 中	市関加理体 系	定期監視							0										0									
作果塚児測正	東大着地点 数年 (3年を日安) に1回、前回は25年度 数年 (3年を日安) に1回、前回は25年度 常時監視 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○														●:分析中													
	水質 鹿曳														△: 異常時の対応として 実施、分析済													
送 周辺環	最境モニタリンク ゚	海域 水質汚濁									0																水質、底質それぞれ、年1回	▲: 異常時の対応として 実施、分析中

¹⁾⁵月の分析中(中間処理施設の煙突(ばいじん)、煙突(ダイオキシン類)、敷地境界 騒音、振動、悪臭)については、分析に通常2か月程度の日数を要しており 5月下旬に検体を採取したため。

3. 薬品、ユーティリティの使用実績

平成 29 年 5 月までの薬品、ユーティリティの使用実績は、下表12-1-1、12-1-2、12-2-1、12-2-2、12-3-1及び12-3-2のとおりである。

表 12-1-1 掘削・運搬、中間処理施設 薬品、ユーティリティ使用実績 (平成15~29年度)

		15年度														15年度~	29年度	
	区分	本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	28年度 小計	29年度 4~5月 小計	累計 29年5月末まで
	生石灰(kg)	300,000	1,005,000	885,000	795,000	785,000	1,380,000	1,820,000	1,670,000	1,480,000	1,525,000	2,075,000	1,425,000	1,882,000	1,577,000	18,604,000	0	18,604,000
掘削·運搬	炭酸カルシウム(kg)	930,000	4,200,000	3,720,000	4,095,000	4,695,000	3,123,000	3,060,000	1,700,000	3,440,000	3,685,000	4,380,000	7,940,000	10,435,000	12,325,000	67,728,000	0	67,728,000
作用 理教	酸化第二鉄(kg)	0	0	0	0	0	0	0	0	0	0	0	0	0	1,470,000	1,470,000	0	1,470,000
	電力量 (kwh)	1,688,076	1,726,776	1,570,692	1,535,496	1,537,608	1,510,548	1,492,704	1,560,504	1,643,496	1,624,740	1,625,496	1,574,940	1,622,928	1,259,100	21,973,104	215,280	22,188,384
	炭酸カルシウム(kg)	722,933	3,203,644	3,329,034	2,909,340	3,939,552	2,828,038	4,282,999	4,822,952	5,133,449	5,646,260	4,913,018	1,806,485	896,403	1,452,321	45,886,428	767,144	46,653,572
	消石灰(kg)	247,587	880,309	600,619	543,626	555,081	886,134	1,117,691	1,029,852	1,013,929	1,079,730	1,162,609	1,113,470	1,186,558	915,829	12,333,024	187,207	12,520,231
	活性炭(kg)	237	2,021	8,776	16,299	25,657	28,982	15,829	15,831	15,240	15,645	16,840	6,814	6,802	6,854	181,827	1,193	183,020
	PAC(kg)	21,508	79,570	85,710	126,550	100,870	134,230	143,100	166,750	132,930	127,190	155,930	129,770	141,310	136,310	1,681,728	22,680	1,704,408
	重油(k@)	2,789	9,520	11,934	13,177	9,924	11,950	12,335	11,694	10,774	11,443	13,279	13,926	15,203	17,931	165,880	3,333	169,212
中間処理	うち、溶融炉(k0)	2,730	9,056	11,540	12,831	9,473	11,507	11,474	10,731	9,929	10,493	12,230	12,924	14,282	16,841	156,042	3,128	159,170
	うち、キルン炉(k0)	59	464	394	346	451	443	861	963	845	950	1,049	1,003	921	1,090	9,838	205	10,043
	電力(MWh)	9,258	19,909	20,087	19,976	19,488	19,750	19,910	19,972	20,126	19,906	20,245	19,785	19,102	18,327	265,840	3,006	268,847
	上水(m3)	15,246	55,748	69,303	79,405	65,865	65,790	84,987	71,731	72,628	82,405	87,768	85,864	86,396	85,799	1,008,935	15,540	1,024,475
	純水(t)	16,528	63,164	68,996	65,869	66,120	73,256	65,155	73,835	51,770	62,388	58,542	54,387	48,273	45,634	813,917	8,980	822,897
	外部蒸気送り量(t)	15,083	59,192	64,522	61,586	58,954	64,505	60,452	64,627	56,004	61,159	56,297	52,038	45,762	43,051	763,231	8,394	771,624

¹⁾ 生石灰、炭酸カルシウムなどの主な薬品や重油、電力などのユーティリティの原単位(廃棄物処理量1トン当たりの実績値)は、別紙に示している。

²⁾ 掘削・運搬の電力については、平成15年4月からの中間保管・梱包施設/特殊前処理物処理施設の使用電力量であり、凝集膜分離装置(平成24年2月~)及び活性炭吸着塔(平成26年3月~)の電力を含む。

³⁾ 平成 18 年1月から、中間処理施設の排ガス中のダイオキシン類対策として活性炭の噴霧を行っているため、活性炭の使用量が急増している。

⁴⁾PACについては、自動計測器がなく、毎月購入し在庫を持たないことから、購入量を使用量として記載している。

⁵⁾ H22.6.14~H22.8.7 の間、上水使用に係る積算流量計故障により、上水使用量(作業・稼動情報)が計測不能となっている。

表 12-1-2 掘削・運搬、中間処理施設 薬品、ユーティリティ使用実績 (平成29年度)

		15年度~							29年度							
	区分	28年度 小計	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	累計 29年5月末まで
	生石灰(kg)	18,604,000	0	0											0	18,604,000
掘削•運搬	炭酸カルシウム(kg)	67,728,000	0	0											0	67,728,000
7年刊*7里版	酸化第二鉄(kg)	1,470,000	0	0											0	1,470,000
	電力量(kwh)	21,973,104	111,468	103,812											215,280	22,188,384
	炭酸カルシウム(kg)	45,886,428	371,592	395,552											767,144	46,653,572
	消石灰(kg)	12,333,024	80,849	106,358											187,207	12,520,231
	活性炭(kg)	181,827	557	636											1,193	183,020
	PAC(kg)	1,681,728	10,040	12,640											22,680	1,704,408
	重油(k0)	165,880	1,580	1,753											3,333	169,212
中間処理	うち、溶融炉(k0)	156,042	1,483	1,645											3,128	159,170
	うち、キルン炉(k0)	9,838	97	108											205	10,043
	電力(MWh)	265,840	1,457	1,550											3,006	268,847
	上水(m3)	1,008,935	6,679	8,861											15,540	1,024,475
	純水(t)	813,917	4,421	4,559											8,980	822,897
	外部蒸気送り量(t)	763,231	4,132	4,261											8,394	771,624

表 12—2-1 中間処理施設 薬品、ユーティリティ使用実績 (平成15~<mark>29</mark>年度) (下表の薬品については、年間に数回しか使用していないため、購入量を使用量とみなしている。)

1)ボイラー薬品三種とHCI 試薬については、平成17年度から薬品の原料を購入(下段)し、希釈して使用している。

	区分	15年度 本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	15年度~ 28年度 小計	29年度 1~5月 小計	累計 29年5末まで
	苛性ソーグ(kg)	80,790	261,260	180,820	80,530	60,320	80,360	60,200	41,180	20,120	20,450	41,060	102,520	779,290	1,484,440	3,293,340	311,580	3,604,920
	次亜塩素酸ソーダ(kg)	400	800	200	500	1,400	1,000	1,400	720	1,760	600	2,600	2,400	2,800	1,200	17,780	0	17,780
	高分子凝集剤(kg)	550	1,600	1,450	2,150	1,300	1,950	5,100	2,200	5,500	4,250	4,900	2,650	2,600	2,500	38,700	300	39,000
	ボイラー清缶剤(kg)	100	500	200	_	_	_	_	_	_	_	_		_	_	800	_	800
	下段は <原料名第3リン酸ソーダ>	_	_	50	25	25	25	25	25	0	0	50	50	50	75	400	0	400
	ボイラー脱酸素剤(kg)	400	1,200	200	_	_	_	_	_	_	_	_	_	_	_	1,800	_	1,800
中間処理	下段は <原料名ヒドラジンヒドラード>	_	-	80	160	280	280	240	360	80	240	200	60	80	120	2,180	0	2,180
	ボイラー満水保缶剤(kg)	100	400	0	_		_	_	_		_	_	-	1	_	500	_	500
	下段は <原料名オキシノンM-608>	_	_	_	112	128	128	192	224	112	192	128	64	96	128	1,504	0	1,504
	冷却水薬品 (プラント機器)(kg)	700	1,400	1,000	1,200	2,000	1,400	1,600	1,000	1,600	1,600	1,200	2,400	2,000	1,800	20,900	200	21,100
	冷却水薬品 (溶融炉)(kg)	1,400	4,400	3,200	3,200	1,300	1,200	1,000	400	1,800	1,400	2,000	4,000	3,600	3,600	32,500	1,200	33,700
	HCI試薬(ℓ)	300	150	_	_	_	_	_	_	_	_	_	_	_	_	450	_	450
	〈原料名フタル酸水素カリウム〉	_	_	10	20	20	0	0	0	0	0	0	0	0	0	50	0	50

表 12-2-2 中間処理施設 薬品、ユーティリティ使用実績 (平成29年度) (下表の薬品については、年間に数回しか使用していないため、購入量を使用量とみなしている。)

		s of the state							29年度							
	区分	15年度~ 28年度 小計	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	累計 29年5末まで
	苛性ソーダ(kg)	3,293,340	151,070	160,510											311,580	3,604,920
	次亜塩素酸ソーダ(kg)	17,780	0	0											0	17,780
	高分子凝集剤(kg)	38,700	0	300											300	39,000
	ボイラー清缶剤(kg)	800	_	_											_	800
	下段は <原料名第3リン酸ソーダ>	400	0	0											0	400
	ボイラー脱酸素剤(kg)	1,800	_	_												1,800
中間処理	下段は <原料名ヒドラジンヒドラード>	2,180	0	0											0	2,180
	ボイラー満水保缶剤(kg)	500	_	_	****										_	500
	下段は <原料名オキシノンM-608>	1,504	0	0											0	1,504
	冷却水薬品 (プラント機器)(kg)	20,900	200	0											200	21,100
	冷却水薬品 (溶融炉)(kg)	32,500	600	600											1,200	33,700
	HCI試薬(ℓ)	450	_	-											_	450
	〈原料名フタル酸水素カリウム〉	50	0	0											0	50

表 12-3-1 高度排水処理施設、凝集膜分離装置、活性炭吸着塔 薬品、ユーティリティ使用実績 (平成15~29年度)

	区分	15年度	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	15年度~ 28年度 小計	29年度 4~5月 小計	累計 29年5月末まで
	アルカリ剤(苛性ソーダ) (0)	18,930	24,130	15,850	17,860	18,060	17,770	20,310	15,680	17,830	17,550	17,870	14,235	12,955	17,670	246,700	1,660	248,360
	酸(硫酸) (0)	9,330	10,895	11,772	6,940	10,120	7,025	7,570	7,625	6,210	5,825	6,540	7,625	6,870	5,740	110,087	560	110,647
	凝集剤(塩化第二鉄) (0)	32,375	37,905	27,860	28,305	29,460	28,980	29,320	29,325	29,405	28,785	28,245	23,525	20,875	19,805	394,170	1,885	396,055
	リン酸 (0)	822	731	325	129	299	228	168	33	29	21	254	174	272	407	3,892	41	3,933
	凝集助剤(AP-636) (kg)	7.6	8.6	7.3	6.2	7.3	6.3	8.0	7.0	4.7	6.7	6.2	6.2	7.0	6.8	95.9	0.8	96.7
高度排水 処理施設	メタノール (0)	10,190	14,290	10,220	6,120	7,090	3,460	4,680	6,390	3,770	3,630	4,500	7,150	6,320	6,500	94,310	730	95,040
	次亜塩素酸ソーダ (0)	118.5	157.0	121.0	54.0	41.0	100.0	128.0	167.0	143.0	195.0	80.5	118.5	168.0	179.5	1,771.0	19.0	1,790.0
	脱水助剤(CP-360H) (kg)	285	330	135	135	180	180	285	135	195	195	255	135	135	195	2,775	30	2,805
	消泡剤(アワセンサー) (kg)	32.4	66.2	55.6	20.0	17.6	18.4	14.0	17.6	16.4	16.4	24.0	13.8	7.2	6.6	326.2	0.2	326.4
	活性炭(水用)(kg)	1,290	2,580	2,580	2,580	2,580	2,580	2,580	2,580	2,580	2,580	2,580	2,580	2,580	2,580	34,830	0	34,830
	電力量(kwh)	766,107	774,317	654,346	647,530	641,025	627,241	631,121	617,767	621,631	608,083	593,285	577,003	614,908	607,080	8,981,444	76,326	9,057,770
	アルカリ剂(苛性ソーダ) (0)	_	_	_	_		_	_	_	14	2,246	4,688	985	3,193	5,118	16,244	0	16,244
凝集膜 分離装置	酸(硫酸) (0)	_	_	_	_	_	_	_	_	0	53	32	1	0	0	86	0	86
(平成24年 2月稼働)	凝集剤(塩化第二鉄) (0)	_	_	_	_	_	_	_	_	303	4,863	6,594	1,256	4,498	6,265	23,779	0	23,779
	凝集助剤(AP-636) (kg)	_	_	_	_	_	_	_	_	_	_	0	35	3,655	12,550	16,240	0	16,240
活性炭吸着 塔(平成26年 3月稼働)	活性炭(kg)	_	_	_	_	_	_	_	_	_	_	0	1,300	3,050	3,050	7,400	0	7,400

表 12-3-2 高度排水処理施設、凝集膜分離装置、活性炭吸着塔 薬品、ユーティリティ使用実績 (平成29年度)

		15年度~							29年度							
	区分	28年度 28年度 小計	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4~5月 小計	累計 29年5月末まで
	アルカリ剤(苛性ソーダ) (0)	246,700	1,160	500											1,660	248,360
	酸(硫酸) (0)	110,087	365	195											560	110,647
	凝集剤(塩化第二鉄) (0)	394,170	1,220	665											1,885	396,055
	リン酸 (0)	3,892	27	14											41	3,933
	凝集助剤(AP-636) (kg)	95.9	0.5	0.3											0.8	96.7
高度排水 処理施設	メタノール (0)	94,310	490	240											730	95,040
	次亜塩素酸ソーダ (0)	1,771.0	12.0	7.0											19.0	1,790.0
	脱水助剤(CP-360H) (kg)	2,775	15	15											30	2,805
	消泡剤(アワセンサー) (kg)	326.2	0.0	0.2											0.2	326.4
	活性炭(水用)(kg)	34,830	0	0											0	34,830
	電力量 (kwh)	8,981,444	41,430	34,897											76,326	9,057,770
	アルカリ剤(苛性ソーダ) (0)	16,244	0	0											0	16,244
凝集膜 分離装置	酸(硫酸) (0)	86	0	0											0	86
(平成24年 2月稼働)	凝集剤(塩化第二鉄) (0)	23,779	0	0											0	23,779
	凝集助剤(AP-636) (kg)	16,240	0	0											0	16,240
活性炭吸着 塔(平成26年 3月稼働)	活性炭(kg)	7,400	0	0											0	7,400

¹⁾活性炭吸着塔の活性炭は、入れ替え時点の量である。

4. 豊島廃棄物等の掘削実績(体積)について

平成29年3月までの廃棄物等の掘削実績は、下表のとおりである。

表 13 (平成15~28年度)

(単位: m³)

区分	15年度~ 22年度	23年度	24年度	25年度	26年度	27年度	28年度	15年度~ 28年度 累計
掘削量	315,159	41,762	57,181	52,750	46,780	42,486	46,669	602,787
うち、公害等調整委員会調 査結果外	14,944	3,992	7,895	11,399	8,582	8,503		55,315

¹⁾公害等調整委員会調査結果外とは、公害等調整委員会調査の廃棄物等区域以外の周辺部廃棄物等、つぼ掘り廃棄物等の量であり、平成 22 年度までの年度ごとの把握は困難なことから、平成 15~22 年度に一括掲載している。

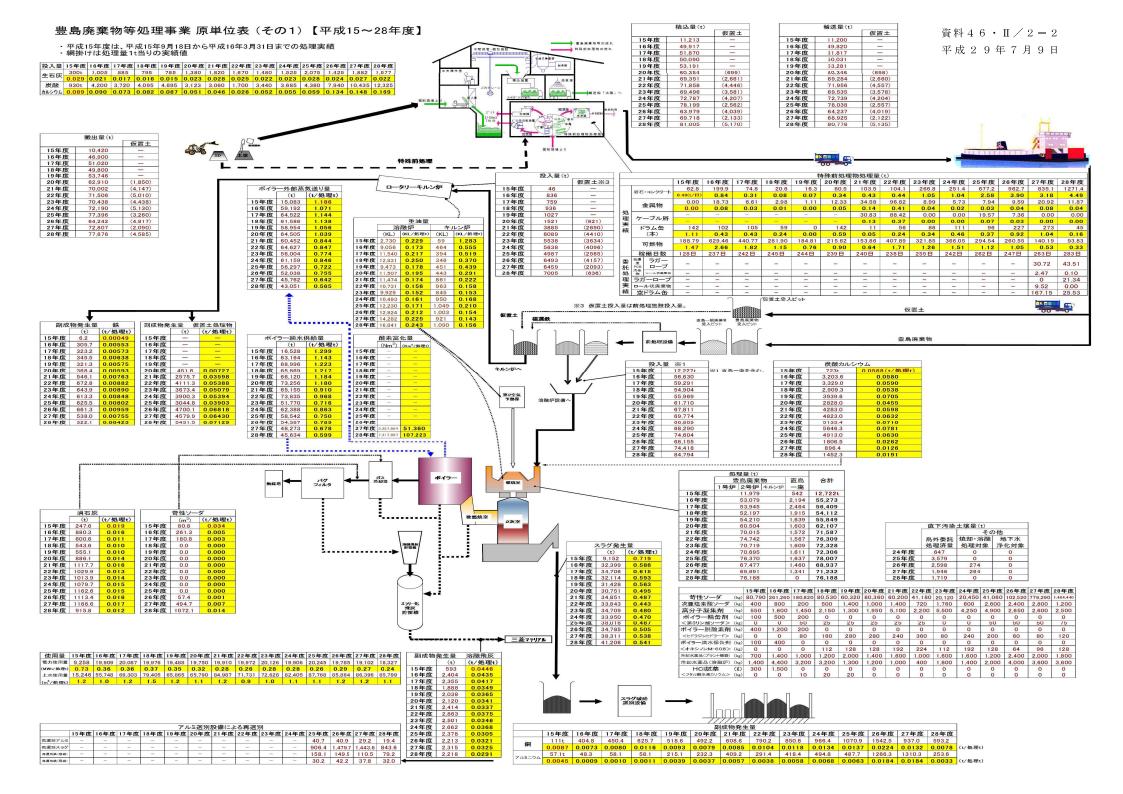
5. 見学者数について

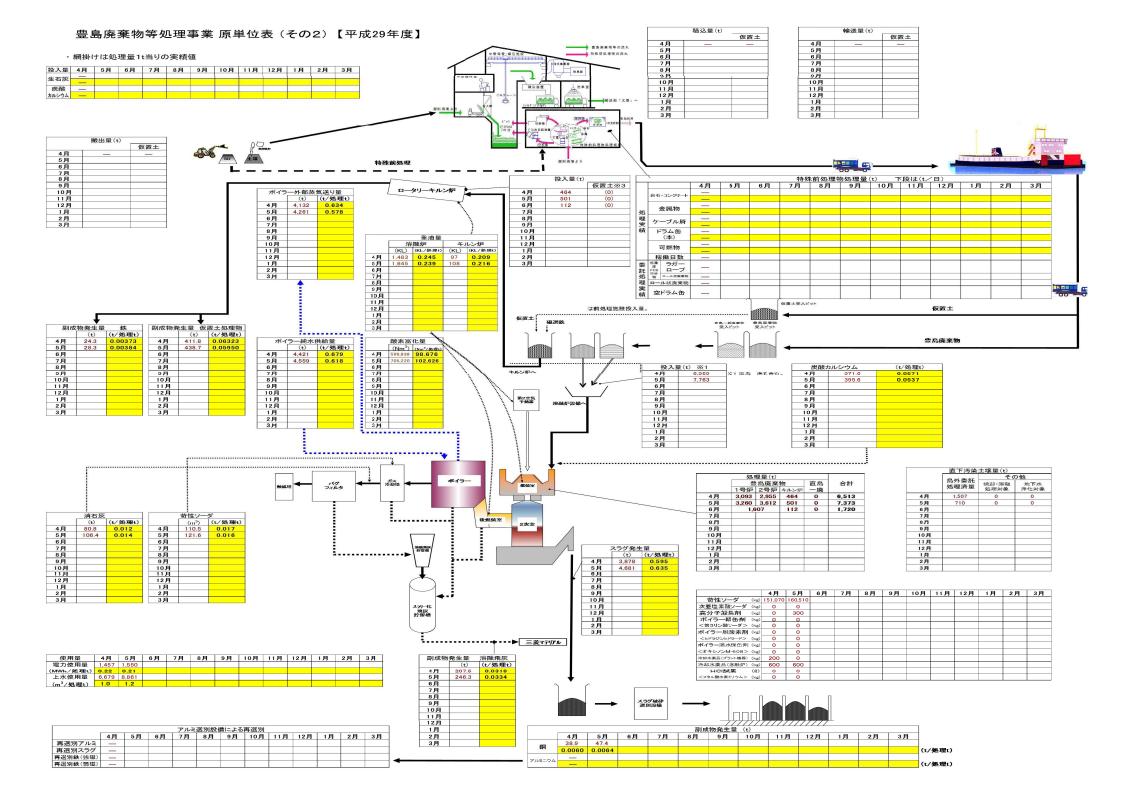
平成29年5月までの豊島、直島それぞれの見学者の実績は、下表のとおりである。

表 14

(単位:人)

		15年度														- furti						2	29年度						田利
	区分	本格稼動後 (9月18日 ~3月)	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	15年度~ 28年度 小計	4月	5月	6月	7月	8月)月 10	0月 11	月 12.	1月	2月	3月	4~5月 小計	累計 29年5月末 まで
	豊島側	3,514	5,489	3,240	2,605	1,922	1,876	1,806	1,561	1,754	1,776	1,914	1,593	1,795	2,071	32,916	140	55										195	33,111
実績	直島側	4,935	7,827	5,297	4,114	3,867	3,471	3,673	3,064	1,768	1,957	1,634	1,834	1,864	1,714	47,019	-	_										0	47,019
	合計	8,449	13,316	8,537	6,719	5,789	5,347	5,479	4,625	3,522	3,733	3,548	3,427	3,659	3,785	79,935	140	55										195	80,130


²⁾ 平成 22 年度末の周辺廃棄物等掘削量(18,721 ㎡) のうち、H測線東側から掘削した廃棄物量(3,777 ㎡) は、平成 23 年度に掘削したことが判明したため、平成 23 年度の掘削量とした。


6. ひやり・ハット等の状況

平成29年7月8日までのひやり・ハット等の報告は、下表のとおりである。(前回までの報告分を除く。)

番号	日時	発生場所等	区分	は、下衣のとわりである。 (前回までの報音分を 内 容	再発防止の対応等
				1 4	
1	H28. 8. 29	掘削現場	物損	処分地内において、場内整備の為に 10t ダンプ	・当日(平成28年8月29日)にミーティング
				トラック及び軽トラック自動車を縦列駐車してい	にてKYK(危険予知活動)を実施した。
				た。作業を終えたので、10 t ダンプトラックを所	・再発防止検討会及び安全教育を実施する。
				定位置へ戻す為に後進したところ、後方に停車し	・停止車両を運転する前には、周囲の確認を徹
				ていた軽トラック自動車に気付かずに接触してし	底する。
				まった。	・死角になるような場所には駐車しないことを
					徹底する。
					・運転席に「周囲確認よいか!」「後方確認よ
					いか!」の注意喚起を表示する。
2	H28. 11. 16	直島・中間処理施設	物損	中間処理施設プラットホームにて、豊島廃棄物	・洗車室内では車両がスリップする可能性があ
				をピットに投入した後、洗車室に移動したコンテ	るため、運転を慎重に行うよう、全員に周知徹
				ナダンプトラックが、スリップして壁に接触し、	底した。
				サイドミラー支柱を損傷させた。	・洗車室内で車両がスリップ又はオーバーラン
				原因は、路面でタイヤが滑ってしまい、車両が	してしまった際の安全対策として、洗車室内前
				オーバーランしたことによる。	方に車止めを設置した。
					・車両運転手に壁面が近いことを明瞭に示すた
					め、反射シールの付いた三角コーンとバーを設
					置した。
					・車両停車位置の目安となる場所(運転席の横
					壁面)に、赤色のペイントを施した。
3	H28. 11. 24	直島・中間処理施設	物損	中間処理施設プラットホームにて、コンテナダ	・4番ピットには、車両を誘導する為の補助線
		, , , , , , , = = . 2.5		ンプトラック内の豊島廃棄物を4番ピットに投入	を設けているので、その線を目標にしながら、
				する為、ハンドルを調整しながら同ピットに後進	慎重に運転を行うよう、全員に周知徹底した。
				させていた。	
				その際、4番ピット横の壁面(入口側)と、車	
				両左後方のガード部を軽く接触させてしまった。	
				原因は、運転手がピット横壁面までの距離を見	
				誤ってしまったことによる。	
			<u> </u>	きょくしみ シにしこにから	

②粒度選別機内部 られるように改 【人】 ①手順書の教育に	大身 投入ホッパー表面に付着した土状の廃棄物を除 去するため、ホッパーに入り、グリズリーの櫛刃 の上に乗り、スコップを使い作業をしていた。そ の際、作業に集中して足元が疎かになり、櫛刃の 間に左足がはまり、その拍子にバランスを崩し左 足が櫛刃にはまったまま転倒し、左足に体重が掛 かり負傷した。 【作業】 ①作業中の巡視は、所長、副所長、班長が行い、 作業の指導を行う。定常作業時の治具の使用 方法を再確認し、手順書の見直しを行う。
は班長が、作業	②粒度選別機内部に清掃用の鉄棒を立て掛けられるように改善した。

豊島廃棄物等処理事業 原単位表 (その3) 【排水処理関係】

高度排水処理施設

	支排小处理他設		15451	10年度	17年度	10年度	10年度	20年度	21年度	22年度	99年度	24年度	25年度	20年度	97年度	20年度						284	年度					
			13千度	10年度	17年度	10千度	19年度	20年度	21年度	22年度	23年度	24年度	20年度	20年度	2/平庚	20年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
			19,642	27,620	21,731	25,965	14,200	19,048	19,679	24,435	20,363	18,771	51,841	21,835	22,174	42,922	1,183	738										
		東井戸揚水井	538	6,991	892	_	965 14.200 19.048 19.679 24.435 20.363 18.771 51.841 21.835 22.174 42.922 1.183 738 9 108 118 128 18 28 38 9 109 118 128 18 28 38 9 109 118 128 18 28 38 9 109 118 128 18 18 18 18 18 18 18 18 18 18 18 18 18																					
受		貯留トレンチ ②	-	-	-	-	-	-	1948 244 245 2																			
î	第1槽(流入槽)	西井戸揚水井 ③	18,019	11,887	13,064	21,537	9,735	15,790	11,866	6,138	8,308	4,725	0	0	46	0	0	0										
<u></u>		中間梱包汚水 ④	34																									
水量		第3工区污染水 ⑤	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-										
重		油水分離装置 ⑥		-	-	-	-	-	-	-	ı	-	-	5	106		0	0										
m	第5槽(多目的槽2)	アスファルト表流水 (7)	52	413	854	1,033	1,162	1,045	1,465	1,105	1,318	1,341	1,099	605	778	634	93	44										
	おり信(タロリ信2)	沈砂池雨水	821	180	966	1,006	163	49	0	0	0	0	0	0	0	0	0	0										
	受入水	量合計	39,107	47,275	37,673	49,694	25,430	36,118	33,298	32,130	30,250	25,145	53,987	23,103	24,787	46,214	1,671	1,013										
详	bn T⊞ ⇒L	海域放流水 ⑧	20,745	20,858	20,054	22,676	21.563	20,406	20,509	20,430	24,288	24.203	23,346	24.503	27.050	25.806	1.665	911										
		中水送水 ⑨			3,020	1,429	2,416	2,667	3,369	3,193				3,054	2,080	2,172	50	35										
小	プラント用雨水送オ	(10)																16										
里			17.867	32,560	26,430	28,711	3.005	12.728	11.121	9,366	4.679	342	28,033	0	177	22.328	0	0										
m	送水量	量合計	39,603	55,801	49,944	53,247	27,495	36,294	35,611	33,605	30,763	28,406	55,407	28,782	30,747	51,594	1,797	962										
	大野池町水 821 180 960 1,000 103 49 0 0 0 0 0 0 0 0 0																											

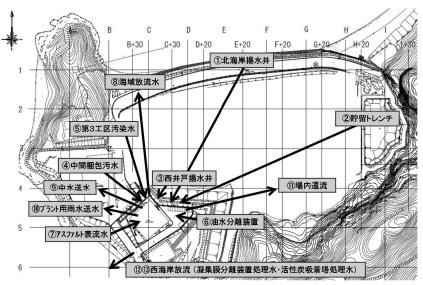
<u>高度排水処理施設</u>	薬品使用量・活性	E炭使用	量 電	力使用記	Ē

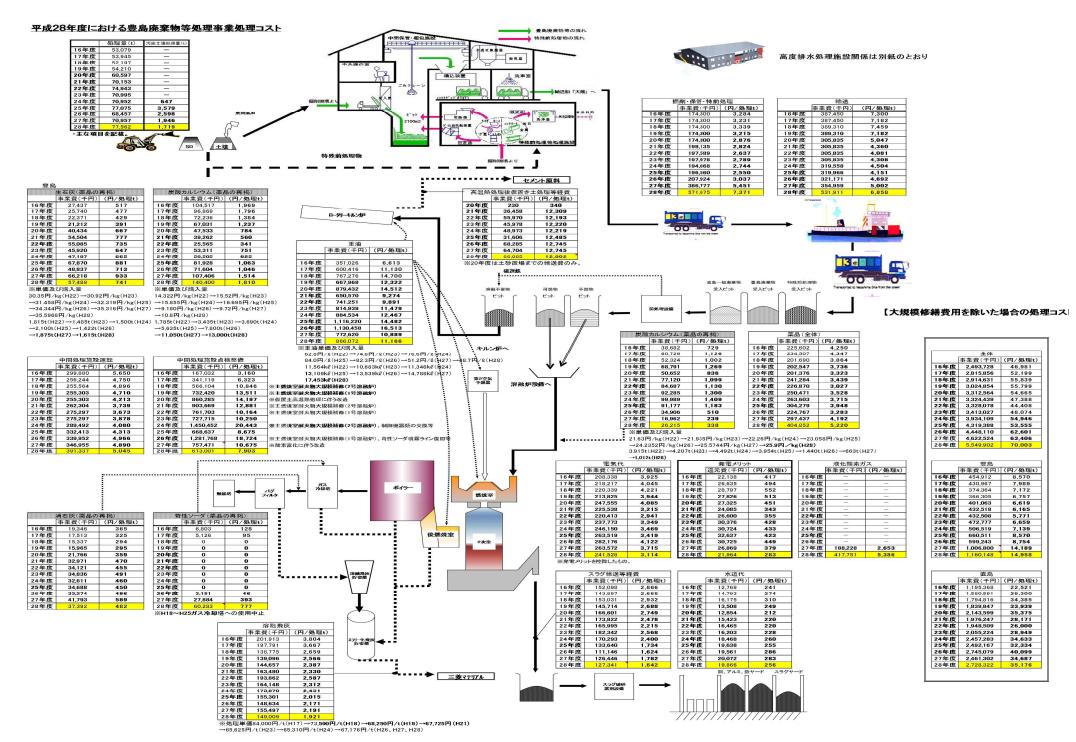
											**										284	F度					
		15年度	16年度	17年度	18年度	19年度	20年度	21年度	22年度	23年度	24年度	25年度	26年度	27年度	28年度	4月	5月	6月	7月	8月			11月	12月	1月	2月	3月
アルカリ剤(苛性ソーダ)	(L)		24,130	15,850	17,860	18,060	17,770	20,310	15,680	17,830	17,550	17,870	14,235	12,955	17,670	1,160	500										
プルカラ剤(司圧ノータ)	(L/処理m(®+9))	0.882	1.058	0.687	0.741	0.753	0.770	0.851	0.664	0.699	0.646	0.680	0.517	0.445	0.632	0.676	0.529										
酸(硫酸)	(L)	9,330	10,895	11,772	6,940	10,120	7,025	7,570	7,625	6,210	5,825	6,540	7,625	6,870	5,740	365											
3女(19iL日女)	(L/処理m(®+®))	0.435	0.478	0.510	0.288	0.422	0.304	0.317	0.323	0.243	0.214	0.249	0.277	0.236	0.205	0.213											
疑集剤(塩化第二鉄)	(L)		37,905	27,860	28,305	29,460	28.980	29,320	29.325	29,405	28.785	28,245	23.525	20.875	19.805	1,220											
从未月八型10万一以/	(L/処理m(®+9))		1.662	1.207	1.174	1.229	1.256	1.228	1.241	1.152	1.059	1.075	0.854	0.717	0.708	0.711	0.703										
リン酸	(L)	822	731	325	129	299	228	168	33	29	21	254	174	272	407	27											
)	(L/処理m(®+9))		0.0321	0.0141	0.0054	0.0125	0.0099	0.0070	0.0014	0.0011	0.0008	0.0097	0.0063	0.0093	0.0145	0.0157	0.0148										
凝集助剤	(kg)	7.6	8.6	7.3	6.2	7.3	6.3	8.0	7.0	4.7	6.7	6.2	6.2	7.0	6.8	0.5	0.3										
从未切力!	(kg/処理㎡(⑧+⑨))	0.00035	0.00038	0.00032	0.00026	0.00030	0.00027	0.00034	0.00030	0.00018	0.00025	0.00024	0.00022	0.00024	0.00024	0.00029	0.00032										
メタノール	(L)		14,290	10,220	6,120	7,090	3,460	4,680	6,390	3,770	3,630	4,500	7,150	6,320	6,500	490											
777 10	(L/処理m(®+9))		0.627	0.443	0,254	0.296	0.150	0.196	0.270	0.148	0.134	0.171	0,259	0.217	0,232	0.286	0,254										
次亜塩素酸ソーダ	(L)	118.5	157.0	121.0	54.0	41.0	100.0	128.0	167.0	143.0	195.0	80.5	118.5	168.0	179.5	12	7.0										
グ里塩糸酸ノ ー メ	(L/処理m(®+9))	0.0055	0.0069	0.0052	0.0022	0.0017	0.0043	0.0054	0.0071	0.0056	0.0072	0.0031	0.0043	0.0058	0.0064	0.0070	0.0074										
	(kg)	285	330	135	135	180	180	285	135	195	195	255	135	135	195	15	15										
脱水助剤	(kg/処理m(®+9))	0.0133	0.0145	0.0059	0.0056	0.0075	0.0078	0.0119	0.0057	0.0076	0.0072	0.0097	0.0049	0.0046	0.0070	0.0087	0.0159										
:¥:∕- ★il	(kg)	32.4	66.2	55.6	20.0	17.6	18.4	14.0	17.6	16.4	16.4	24.0	13.8	7.2	6.6	0.0											
消泡剤	(kg/処理m((8)+(9)))	0.0015	0.0029	0.0024	0.0008	0.0007	0.0008	0.0006	0.0007	0.0006	0.0006	0.0009	0.0005	0.0002	0.0002	0.0000	0.0002										
T####	(kg)	2.580	2.580	2.580	2.580	2.580	2.580	2.580	2.580	2.580	2.580	2.580	2.580	2.580	2.580	0	0										
活性炭使用量	(kg/処理㎡(®+9))	0.12	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.09	0.10	0.09	0.09	0.09	0.00	0.00										
	(kWh)	766,107	774,318	654,346	647,530	641,025	327,241	631,120	317,767	621,631	608,083	593,285	577,003	614,908	607,080	41,430	34,897										
電力使用量	(kWh/処理m(®+®))	35.7	34.0	28.4	26.9	26.7	27.2	26.4	26.2	24.4	22.4	22.6	20.9	21.1	21.7	24.2	36.9										

凝集膜分離装置

	23年度	24年中	25年度	の名字中	97年度	20年度						284	丰度					
	23年度	24千段	20千段	20年度	27年度	20千段	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
処理水量(西海岸放流)(m²) ①2	2,223	5,690	8,278	1,306	4,625	4,813	0	0										

凝集膜分離装置 油水分離装置 薬品使用量


	/	の年申	0.4年申	05年度	26年度	07年春	20年度						284	主度					
		23千度	29年度	20年度	20年度	27年及	20年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
アルカリ剤	(L)	14	2,246	4,688	985	3,193	5,118	0	0										
(苛性ソーダ)	(L/処理m [*] (⑥+⑫))	0.006	0.395	0.566	0.754	0.690	1.063	-	_										
酸(硫酸)	(L)	0	53	32	1	0	0	0	0										
日友(1911日女)	(L/処理m(⑥+⑫))	0.0000	0.0093	0.0039	0.0008	0.0000	0.0000	-											
凝集剤	(L)	303	4,863	6,594	1,256	4,498	6,265	0	0										
(塩化第二鉄)	(L/処理m ² (⑥+⑫))	0.136	0.855	0.797	0.962	0.973	1.302	-	-										
凝集助剤	(L)	0	0	0	35	3,655	12,550	0	0										
/	(L/処理m(⑥+⑫))	0.000	0.000	0.000	0.027	0.790	2.608	-	_										


£١	14	耑	먮	善	塔	

	25年度	26年度	97年度	28年度						285	F度					
	20千段	20平度	2/牛皮	20年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
処理水量(西海岸放流) (m³) ①	1,192	2,890	5,911	9,511	0	0										

活性炭吸着塔 活性炭使用量

		0545	0 C AT AT	~~ ==	004						283	丰度					
		25年度	20平度	2/平度	28年度	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
江州出 庄田里	(kg) ※入替え時点	1,300	1,300	3,050	3,050	0	0										
活性炭使用量	(kg/処理m³(⑬))	1.09	0.45	0,52	0.32	-	-										

高度排水処理施設関係

高度	排水処理施設運	転管理	ĺ	
	事業費(千円)	(円/処理t)	(円/処理㎡)	
16年度	34,411	648	1,509	※処理水22,807㎡の処理単価
17年度	36,062	689	1,563	※処理水23.074mの処理単価
18年度	32,596	625	1,352	※処理水24,105㎡の処理単価
19年度	35,493	655	1,480	※処理水23.979㎡の処理単価
20年度	33,380	551	1,447	※処理水23,073mの処理単価
21年度	32,193	459	1,348	※処理水23,878㎡の処理単価
22年度	32,981	440	1,396	※処理水23.623mの処理単価
23年度	33,138	467	1,195	※処理水27.742mの処理単価
24年度	35,522	501	1,080	※処理水32.878㎡の処理単価
25年度	42,147	547	1,179	※処理水35.734㎡の処理単価
26年度	41,353	604		※処理水31,/53mの処理単価
27年度	40,111	565	994	※処理水40.360mの処理単価
28年度	41.569	536	923	※処理水45,020㎡の処理単価

高度排水処理 施設本体	凝集膜分離装置	活性炭吸着塔	加圧浮上装
22,807	-	2-1	1-1
23,074	-	-	-
24,105	-	-	-
23,979	-		
23,073	-	-	-
23,878	-	1-1	-
23,623	-	1-1	-
25,519	2,223	-	-
27,188	5,690	-	-
26,264	8,278	1,192	_
27,557	1,306	2,890	9-1
29,130	4,625	5,911	694
27,978	4,813	9,511	2,718

高度	排水処理施設的	呆守点検	
	事業費(千円)	(円/処理㎡)]
16年度	12,495	548	
17年度	14,817	642	
18年度	17,857	741	1
19年度	22,338	932	1
20年度	32,396	1,404	1
21年度	29,190	1,222	1
22年度	27,668	1,171	1
23年度	27,752	1,000]
24年度	43,641	1,327	※PLC全面更新(13,503)
25年度	32,619	913	
26年度	58,115	1,830	※オゾン発生装置電源盤等
27年度	32,098	795	
28年度	31,835	707	

19年度 15,092 20年度 13,917 21年度 15,256 22年度 15,094 23年度 14,764 164 24年度 14,728 1,749 25年度 18,721 1,207 26年度 16,876 498

27年度 15,067

16年度 11,721 17年度 14,550 18年度 12,255

※オゾン発生装置電源盤等更新(26,460)

28年度 16,442 1,580 ※平成25年度の活性炭吸着塔の薬品 は、当初の設置費用に含まれている。

801

薬品(運転管理費の再掲) 高度排水(千円) 凝集膜(千円)

同度 1	F小处理肥設惯					
	事業費(千円)	(円/処理m)				
16年度	2,468	108				
17年度	3,187	138				
18年度	3,052	127				
19年度	472	20				
20年度	5,617	243				
21年度	751	31				
22年度	3,694	156				
23年度	32,241	1,162				
24年度	5,233	159				
25年度	50,107	1,402				
26年度	91,900	2,894				
27年度	1,276	32				
28年度	783	17				

直度排水机理協設機與衣換等

※凝集膜分離装置設置(30,762) ※凝集膜分離装置改修(3.255) ※活性炭吸着塔設置(22,575)、貯留槽(第1,2槽)防食塗装(24,003)、排オゾン分解塔改修(2,556) ※貯留槽(第3, 4, 5槽)防食塗装(71,226)、加圧浮上装置設置(19,548)

高	庆排水処理施 認	電気代
	事業費(千円)	(円/処理m)
16年度	10,506	461
17年度	9,158	397
18年度	9,398	390
19年度	9,432	393
20年度	10,229	443
21年度	9,253	388
22年度	9,129	386
23年度	9,827	354
24年度	9,917	302
25年度	10,225	286
26年度	10,588	333
27年度	10,462	259
28年度	9,742	216

直島中間処理施設の大規模補修

_												(単位:十円)
	項目	平成18年度	平成19年度	平成20年度	平成21年度	平成22年度	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度
	溶融炉耐火物張替え	184,596	201,698	222,980	270,437	247,032	201,566	421,441	0	406,590	0	
t	電気計装設備更新	0	0	0	0	0	0	207,398	72,540	0	0	
規模補	仮置き土高温熱処理 に伴う改造	0	0	69,795	0	0	0	0	0	0	0	
售	酸素富化に伴う改造	0	0	0	0	0	0	0	0	0	95,666	
	その他 ・クレーンパケット交換 ・ダクト更新 等	0	0	23,617	0	0	0	26,065	20,517	33,802	11,880	64,241
	計	184,596	201,698	316,391	270,437	247,032	201,566	654,904	93,057	440,392	107,546	64,241

耐火物張替え箇所

	箇所	平成18年度	平成19年度	平成20年度	平成21年度	平成22年度	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度
	天井•内筒		0			0				0		
	スラグポート			•			•			•		
	二次燃烧室上部		•				•					
	一次燃烧至中间部		●(上部)	●(下部)						•		
1 号	二次燃烧室下部						•			•		
炉炉	二次煙道					•						
	後燃焼室			•						•		
	ボイラー1室					●(下半分)	●(上半分)					
	ボイラー2室									•		
	ボイラー3室									•		
	天井•内筒	0			0			0				
	スラグポート			•			•					
	二次燃烧室上部	•					•					
	二次燃烧室中間部			•				•				
2	二次燃烧室下部				•			•				
号炉	二次煙道				•							
	後燃焼室			•				•				
	ボイラー1室				•							
	ボイラー2室							•				
	ボイラー3室							•				

注1)『●』は張替え実施実績を示す。 『@』は主燃焼室耐火物大規模補修を示す。

(参考)全体コスト

												(単位:千円)
	項目	平成18年度	平成19年度	平成20年度	平成21年度	平成22年度	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度
	溶融炉耐火物張替え	184,596	201,698	222,980	270,437	247,032	201,566	421,441	0	406,590	0	
t	電気計装設備更新	0	0	0	0	0	0	207,398	72,540	0	0	
大規模補	仮置き士高温熱処理 に伴う改造	0	0	69,795	0	0	0	0	0	0	0	
夦	酸素富化に伴う改造	0	0	0	0	0	0	0	0	0	95,666	
	その他 ・クレーンバケット交換 ・ダケト更新 等	0	0	23,617	0	0	0	26,065	20,517	33,802	11,880	64,241
	計	184,596	201,698	316,391	270,437	247,032	201,566	654,904	93,057	440,392	107,546	64,241

	全体	
	事業費(千円)	(円/処理t)
16年度	2,493,728	46,981
17年度	2,815,856	52,198
18年度	3,099,227	59,375
19年度	3,226,552	59,520
20年度	3,628,955	59,888
21年度	3,594,876	51,243

	全体			副成物有効利用				
	事業費(千円)	(円/処理t)		事業費(千円)	(円/処理t)			
16年度	2,493,728	46,981	16年度	398,946	7,516			
7年度	2,815,856	52,198	17年度	351,394	6,514			
18年度	3,099,227	59,375	18年度	298,057	5,710			
9年度	3,226,552	59,520	19年度	362,989	6,696			
20年度	3,628,955	59,888	20年度	399,732	6,597			
1年度	3,594,876	51,243	21年度	562,077	8,012			
2年度	3,575,110	47,704	22年度	585,628	7,814			
3年度	3,645,355	51,347	23年度	521,053	7,339			
4年度	4,589,013	64,093	24年度	518,133	7,303			
5年度	4,459,023	55,286	25年度	487,896	6,330			
6年度	4,959,728	69,801	26年度	670,802	9,799			
7年度	4,730,070	64,882	27年度	680,563	9,591			
28年度	5,614,143	70,813	28年度	950,677	12,257			

	全体(収益控	除)
	事業費(千円)	(円/処理t)
16年度	2,463,803	46,417
17年度	2,770,046	51,349
18年度	3,045,630	58,349
19年度	3,181,764	58,693
20年度	3,577,662	59,040
21年度	3,542,267	50,493
22年度	3,515,414	46,908
23年度	3,581,376	50,445
24年度	4,514,402	63,051
25年度	4,380,893	54,317
26年度	4,894,955	68,890
27年度	4,688,717	64,314
28年度	5,586,116	70,460

	事業費(千円)	(円/処理t)
16年度	454,912	8,570
17年度	430,967	7,989
18年度	374,364	7,172
19年度	366,305	6,757
20年度	401,063	6,619
21年度	432,518	6,165
22年度	432,508	5,771
23年度	503,539	7,093
24年度	506,519	7,139
25年度	707,089	9,174
26年度	670,469	9,794
27年度	1,006,800	14,189
28年度	1,160,148	14,958

	環境計測等	ŧ.	
	事業費(千円)	(円/処理t)	Ш
16年度	57,052	1,075	16
17年度	65,454	1,213	17
18年度	58,084	1,113	18
19年度	66,403	1,225	19
20年度	62,335	1,029	20
21年度	47,762	681	21
22年度	55,598	742	22
23年度	58,138	819	23
24年度	56,592	798	24
25年度	59,651	774	25
26年度	63,227	924	26
27年度	77,761	1,096	27
28年度	100,116	1,291	28
			1 -

	銅販売	
	販売費(千円)	(円/処理t)
16年度	14,870	280
17年度	24,104	447
18年度	26,412	506
19年度	26,629	491
20年度	29,534	487
21年度	31,434	448
22年度	38,934	520
23年度	45,151	636
24年度	53,190	750
25年度	56,173	729
26年度	44,595	651
27年度	24,805	350
28年度	13,953	180

輸送(再掲)		
	事業費(千円)	(円/処理t)
16年度	387,450	7,299
17年度	387,450	7,182
18年度	389,310	7,458
19年度	389,310	7,182
20年度	305,835	5,047
21年度	305,835	4,360
22年度	305,835	4,081
23年度	305,835	4,308
24年度	319,558	4,504
25年度	319,966	4,151
26年度	321,171	4,692
27年度	354,959	5,002
28年度	531,911	6,858

	事業費(千円)	(円/処理t)
24年度	18,447	28,512
25年度	65,159	18,206
26年度	48,588	18,702
27年度	41,139	21,140
28年度	78,728	45,799

出。		
汚	杂土壤処理関	連工事
	業費(千円)	(円/処理t)
24年度	57,577	_
25年度	234,038	-

	MANAGE		
		販売費(千円)	(円/処理t)
	16年度	5,309	100
	17年度	2,462	46
	18年度	3,505	67
	19年度	4,080	75
	20年度	5,003	83
	21年度	2,417	35
ı	22年度	3,261	44
	23年度	2,800	39
	24年度	1,112	16
	25年度	1,379	18
	26年度	1,674	24
ı	27年度	790	11
	28年度	162	2

鉄販売

	直島	
	事業費(千円)	(円/処理t)
16年度	1,195,368	22,521
17年度	1,580,591	29,300
18年度	1,979,412	37,922
19年庚	2,041,545	37,660
20年度	2,459,990	40,596
21年度	2,246,684	32,025
22年度	2,195,541	29,296
23年度	2,256,790	31,788
24年度	3,112,187	43,863
25年度	2,585,224	33,542
26年度	3,185,471	46,532
27年度	2,568,848	36,203
28年度	2.792.563	36,004

	スラグ販売	t
j j	販売費(千円)	(円/処理t)
16年度	9,747	184
17年度	19,244	357
18年度	22,598	433
19年度	14,080	260
20年度	16,257	268
21年度	18,728	267
22年度	17,501	234
23年度	15,532	219
24年度	20,309	286
25年度	20,131	261
26年度	17,948	262
27年度	15,303	216
28年度	13,731	177

27年度	15,303	216		
28年度	13,731	177		
スラグの保管量が低下したため、				
19.6.4~9.30まで販売を一時休止し				
t				

アルミ販売		
	販売費(千円)	(円/処理t)
18年度	1,082	21
20年度	499	8
21年度	30	0
25年度	447	6
26年度	556	R
27年度	442	6
28年度	175	2

廃バッテリー等販売		
	販売費(千円)	(円/処理t)
3年度	496	7
7年度	13	0
8年度	6	0

*H23は、鉛、被覆雑線層を含む。

は、収益を表示。 は、全体事業費。

第27回豊島処分地排水・地下水等対策検討会の審議概要

第 45 回管理委員会 (H29. 4. 16) 以降に開催された、第 27 回検討会 (H29. 6. 18) の審議結果の概要は 以下のとおりである。

第 27 回排水 • 地下水等対策検討会(H29. 6. 18)

1. D測線西側の地下水質等の状況

揚水井を設置して地下水浄化を進めているD測線西側のモニタリング結果を報告した。浅い層では 排水基準値を満足してきているが、深い層では満足している項目は少ないことなどを報告した。

あまり浄化が進んでいない深い層の浄化対策として、集水井を設置するために実施設計を進めていることを報告した。また、その他の浄化手法としてどのようなものがあるのか、その効果や適用の可能性について報告した。

油混じり水は加圧浮上装置と高度排水処理施設で処理することとなっているが、点在している油混じり水が付着していた土壌について、破砕後に水洗浄する方法、破砕後に中間処理施設で溶融する方法及び外部委託処理する方法を提案した。

<委員からの意見等>

- ○集水井については、風化花崗岩層では効果が限られる可能性がある。試しに(C+5,2+40)くらいまでの短い距離ですることも検討してほしい。また、掘削した時の土壌の取扱いも考えておく必要があるが、揮発性があるので現場で処理する方法がよいと思う。
- ○油混じり水の周りの土壌については、分析結果を見るとダイオキシン汚染土壌ではあるが、PCB汚染土壌ではないので外部委託はもう少し安くなるのではないか。
- ○洗浄試験の方では、洗浄後のダイオキシン類が 160pg-TEQ/g は土壌の環境基準(1000pg-TEQ/g) は満足しているが、底質の基準(150pg-TEQ/g) を超えているので取扱いに気をつけないといけない。 2回洗浄することでもっとダイオキシン類は下がるかもしれない。
- ○中間処理施設での処理案はスケジュール的に外さざるを得ない可能性があるのできちんと調べてほ しい。
- ○加圧浮上装置で処理後の汚泥にダイオキシン類が濃縮されるのでその処理方法も検討してほしい。

2. 地下水概況調査等の状況

前回調査中であった②、②~③及び③~④の30mメッシュの区画(12区画)について、全ての項目において排水基準値を満足していたこと、一方、⑥、②、②及び②の30mメッシュの区画(5区画)については、ベンゼンが排水基準値を超過していたことから、順次、詳細調査を実施しており、結果が判明した⑥及び②の詳細調査結果を報告した。

また、つぼ掘り湧水調査については、新たに8地点のつぼ掘りを調査し、1地点においてベンゼンが排水基準値を超過していたことを報告した。

<委員からの意見等>

- ○区画は関係なしにつぼ掘り毎の調査結果をまとめてほしい。つぼ掘りを埋め戻す時に調査結果によって扱いが変わってくると思う。
- ○30、30及び40の西側についても調査ができていないところについては、30mメッシュに1か所程度で

概況調査をしてほしい。

3. 処分地内の地下水対策等

つぼ掘り部分について、多数のつぼ掘りが連なっているために作業用の通路やスペースが取れず、 また、風雨等により浸食を受けてつぼ掘り周辺地盤が脆くなり、崩落も生じているなど、大変危険な 状態となっていることから地下水対応のために埋め戻すことを検討することを報告した。

これまでの調査において、排水基準値の超過が確認されているつぼ掘りについては、事前に可能な限り水質を確認し、排水基準値を超過していた場合は揚水が行えるように井戸側を設置した上で埋め戻し、排水基準値を超過していなかったつぼ掘りについては流用土で埋め戻すことを検討していることを報告した。

また、詳細調査により周辺地下水も比較的高濃度の汚染が確認されている⑩、⑳及び㉑の区画については、一部を掘削してつぼ掘りを広げて広く揚水できる素掘り穴にすることで浄化の効果を確認することを検討していることを報告した。

流用土については、つぼ掘り周辺の地盤の高いところを切り盛り土工により流用し、併せてトレンチドレーンについても撤去し、透水性の高い花崗土で埋め戻すこととし、この時、揚水設備を複数設けることで排水対策を講じることを報告した。

<委員からの意見等>

- ○つぼ掘りを埋め戻すことで、湧水を採取できなくなるため、地下水が浄化されたかどうかを判断する 方法を別途定める必要がある。
- ○排水基準を超えて対策地域と判定された地点については、対策実施前に改めて地下水濃度の確認を行う。ただし、湧水については採水している間に揮発によって濃度が低くなっているおそれがあり、対策の必要性を的確に判定できていない可能性があるので、排水基準値の2分の1を超過しているところについては、埋め戻しを行ったあとに観測井を設けて水質を確認する必要がある。

D測線西側の油混じり水等の処理

1. 概要

D測線西側の地表付近にある油混じり水については、加圧浮上装置に通したうえ、高度排水処理施設で処理することとなっているが、油混じり水にはPCBや高濃度のダイオキシン類が含まれており、土壌についてもその一部が付着していると考えられることから、掘削された土壌についても取扱いを検討する。

2. 油混じり水の処理

油混じり水の存在を確認しながら少しずつ 掘削範囲を広げ、出てきた油混じり水は加圧浮 上装置に通して油を除去したうえ、その後、少 量ずつ高度排水処理施設で処理する。

油混じり水が点在していると考えられるエリアは図1のとおりである。

図1 油混じり水が点在していると考えられるエリア

3. 掘削された土壌の取扱いの検討

油混じり水には P C B $(0.41 mg/L(H28.4.4 \ \cancel{K} \ x))$ や高濃度のダイオキシン類 $(390 ng-TEQ/L(H28.8.26 \ \cancel{K} \ x))$ が含まれており、土壌についてもその一部が付着していると考えられる。 そこで、掘削された土壌の取扱いについて、次の 2 つの案を検討した。

なお、中間処理施設での溶融処理については、①溶融助剤と混合するためには2mm 程度まで細かな破砕処理が必要となる②溶融助剤との均質化作業及び人員の確保が難しい③中間処理施設では、ピット固着物の処理後は運転体制を縮小するため、再度体制整備しなければ対応が難しい④溶融炉に直接投入するため、土壌のフレコン詰め・解袋作業が必要となる⑤除染等廃棄物の処理との調整が難しいなどの問題点があり、検討案から除外した。

【案1】 土壌洗浄を行う案

掘削した土壌は図 2 のイメージ図のように水切り用に傾斜をつけ、集水ピットを備えたコンクリート製のヤードに仮置きし、篩い分け及び破砕等を行った後、現場に持ち込んだコンパクトな土壌洗浄装置(図 3)に通し、洗浄水については油混じり水とともに加圧浮上装置及び高度排水処理施設において処理を行う。

洗浄土については、事前に洗浄試験を実施した結果、表 1 のとおりであり、問題なく処理できると考えられることから、埋め戻すこととする。なお、コンクリートヤードのピットに溜まった水については、加圧浮上装置を通して、高度排水処理施設で処理を行う。

なお、表 1 の検査結果のとおり、掘削された土壌には P C B の汚染は確認されなかった。

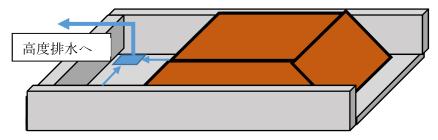


図2 コンクリートヤードイメージ(15m四方程度)

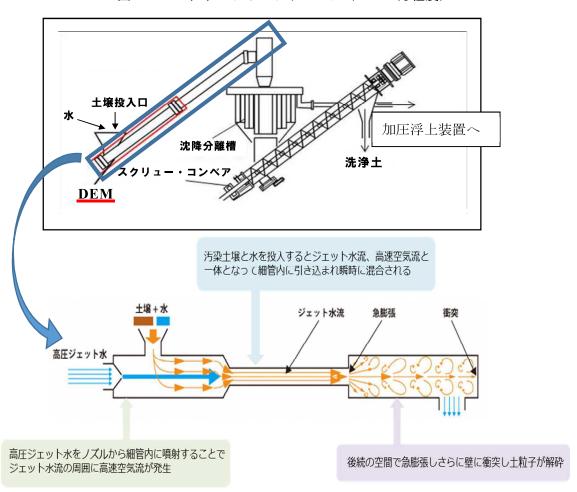


図3 土壌洗浄イメージ図(株式会社アムロンHPより引用)

表 1 洗浄土の検査結果

	ダイオキシン類	PCB	TPH(油分)
洗浄前	12000pg-TEQ/g	<0.0005mg/L	8.2mg/g
洗浄後	160pg-TEQ/g	<0.0005mg/L	$0.52 \mathrm{mg/g}$

写真 洗浄前後の土壌

洗浄前(拡大)

洗浄後 (拡大)

【案2】 廃棄物処理業者に委託して焼却処理する案

掘削した土壌は図 2 のイメージ図のように水切り用に傾斜をつけ、集水ピットを備えたコンクリート製のヤードに仮置きし、水分が抜けた後に、排ガスの状況が直島中間処理施設と同程度の施設を有する廃棄物処理業者に委託し、県の指示のもとに処理を実施することとする。なお、コンクリートヤードのピットに溜まった水については、加圧浮上装置を通して、高度排水処理施設で処理を行う。

4. 取扱いの検討結果

各案を比較した結果は表 2 のとおりで、コスト面や洗浄土を有効利用できる観点から案 1 を主体に検討を進めることとする。なお、D 測線西側は現時点の地盤面から 50cm 程度の深さまでは礫が多く含まれており、洗浄機に投入できないために破砕等が必要になるが、ダイオキシン類の飛散のおそれがあることから周辺環境に影響が出ないように礫が多い層については、案 2 を採用することとする。それ以深については砂状のものが主であることから問題なく洗浄機に投入できると考えられる。

表 2 各案比較表

	【案 1】	【案 2】
コスト	4 万円/ t 程度 + α	7万円/ t 程度
短所	・10~20mm以下のサイズでないと洗浄機に投入	・島外への搬出が必要。
	ができないため、篩い分け、破砕処理が必要。	・一度に処理できる量が少
	・掘削後の土壌は高濃度のダイオキシン類の汚染	なく、処理に時間がかか
	があり、破砕処理の際は、粉じんの飛散防止措	る。
	置が必要。(α)	
	・洗浄水の処理及びそれに伴い発生する汚泥の処	
	理が必要。	
長所	・油汚染土壌の処理についての実績がある。	・破砕処理が不要。
	・処分地内で処理が完了する。	
	・時間 10 t 程度の処理が可能であり、比較的短時	
	間で処理が完了する。	
	装置の径を大きくすることでより大きなサイズ	
	の土壌でも洗浄できる可能性がある。	
その他	・洗浄水は土壌 1 kg に対して 1~1.2 L 程度。	
	・加圧浮上装置から発生する汚泥は水 100 ㎡に対	
	して 2 m ³ 程度。	
		·

処分地内のつぼ掘り部の整地とトレンチドレーンの撤去等への対応

1. つぼ掘り部の整地

現在、処分地に多数できているつぼ掘りについては、地下水対策を実施するための作業用の通路やスペースが取れず、また、風雨による浸食を受けて周辺地盤が脆くなり崩落も生じて大変危険な状態となっている。また、雨水管理の妨げにもなっていることから、第 27 回豊島処分地排水・地下水等対策検討会(H29.6.18)において、つぼ掘りの取扱いについて検討を行った。(詳細は同検討会の資料参照(資料 46・II/2-1))

2. トレンチドレーンの撤去等

北海岸遮水壁沿いのトレンチドレーンの掘削除去の方法については、第 37 回 (H27.3.21) 及び第 38 回 (H27.7.19) の豊島廃棄物等管理委員会にて審議され、既に上部は廃棄物等の掘削に合わせて撤去済みである。 下部の砕石層は遮水壁の保全と排水管理の観点から残置している。

第 27 回豊島処分地排水・地下水等対策検討会では、つぼ掘り部の整地と併せてトレンチドレーンの撤去を 行う案を審議いただいた。(工法等の概要は同検討会の資料参照(資料 $46 \cdot \Pi/2-1$))

一方、地元からは専用桟橋の早期撤去の要請があり、この専用桟橋を撤去すると、トレンチドレーンの砕石 の撤去・搬出が困難となることから、早期に対応を決定したいと考えている。

3. 上記2件に関する今後の対応

上記2件は、早急に「豊島事業関連施設の撤去等検討会」を開催し、検討願いたいと考えている。

中間処理施設の最近のトラブルと対応

平成 29 年 4 月 16 日に開催された第 45 回豊島廃棄物等管理委員会での報告以降、計画外で処理停止に至った事案を表 1 に示す。

表 1 処理停止に至った事案

No.	炉停止 発生日	内容	原因	対応	1号 炉停止 時間 [h]	2号 炉停止 時間 [h]	キルン 炉停止 時間 [h]	備考
1	H29.4.24	スラグヤード分配コンドリ、スラグヤード放障により、スラグル理がピットの貯留を見込みとなったため、一時処理	プーリーが損傷 し、ベルトが大 きく蛇行した		8	8	I	詳細は 後述
2	H29.5.10	2号バグフィル タスクリュ ー コ ンベヤ故障の ため、一時処 理停止	サーマルリレー 取付部の焼損 により、欠相が 発生した	サーマルリレー を交換し、復旧 した	_	11	I	詳細は 後述
3	H29.5.14	1号第1溶融炉 投入コンベヤ 故障のため、 一時処理停止	エプロンパンが 変形し、変形エ プロンが干渉し て過負荷停止 した	変形エプロンパ ンを交換し、復 旧した	63	_	_	詳細は 後述

スラグヤード分配コンベヤの故障について

1. 故障の経緯と原因

平成 29 年 4 月 23 日 9:00 頃、巡回点検において、スラグヤード分配コンベヤ(全長約60m のベルトコンベヤ)の蛇行を発見し、各所の点検を実施したところ、プーリーが損傷していることが判明した。運転の継続は困難であったため、スラグ破砕選別装置を停止したが、この時点ではスラグピット(溶融炉から発生する破砕選別前のスラグを貯留しているピット)の貯留容量に余裕があったため、溶融処理運転は継続した。

4月24日6:40頃、スラグピットの貯留量が最大貯留量に近付いたため、1、2号溶融炉をキープ運転(主燃焼室温度を概ね1,000[©]C程度に保持した状態)に移行させて、8:00頃から一時的に処理を停止した。

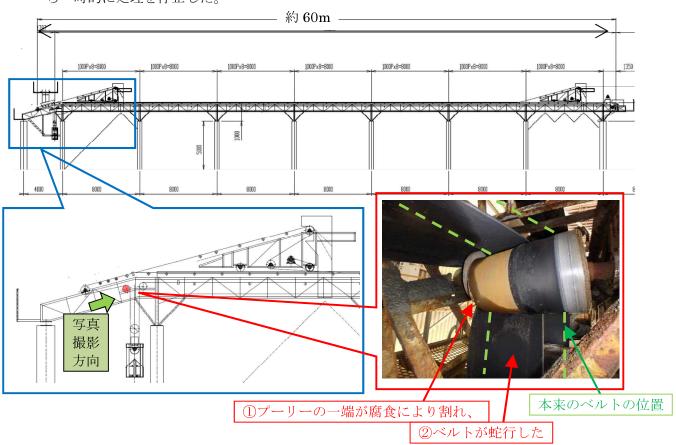


図1 スラグヤード分配コンベヤ故障の状況

2. 処置

4月24日12:00頃、損傷しているプーリーの交換工事を終え、試運転を実施し、12:30頃から、1、2号溶融炉の昇温を開始した。(1、2号溶融炉とも、16:00頃より処理を再開した。)

2号バグフィルタスクリューコンベヤの故障について

1. 故障の経緯

平成 29 年 5 月 9 日 21:35 頃、2 号溶融炉バグフィルタにおいて、溶融飛灰を搬出するスクリューコンベヤの故障が発生した。運転を継続したままの復旧は困難であったことから、キープ運転(主燃焼室温度を概ね 1,000 \mathbb{C} 程度に保持した状態)に移行させて、5 月 10 日 4:00 頃から一時的に処理を停止した。

2. 原因と処置

調査の結果、サーマルリレー(負荷電流が異常増加した際に自動的に接点を開いて電動機等を保護するもの)取付部の焼損による欠相(本来、三相電圧で運転されるべき電動機等が単相で運転されている状態)が発生していたことが判明した。取付部が焼損したサーマルリレーと、サーマルリレーが取り付けられていた電磁接触器を交換して試運転を行い、5月10日11:30頃、昇温を開始した。(溶融処理再開は5月10日15:00頃)

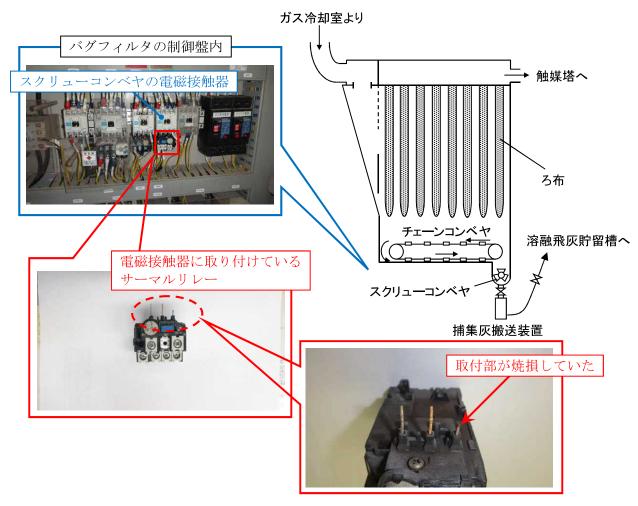


図2 2号バグフィルタスクリューコンベヤ故障の状況

1号第1溶融炉投入コンベヤの故障について

1. 故障の経緯

平成 29 年 5 月 14 日 8:55 頃、1 号第 1 溶融炉投入コンベヤの過負荷による停止が発生した。運転を継続したままの復旧は困難であったことから、キープ運転(主燃焼室温度を概ね 1,000 ℃程度に保持した状態)に移行させて、5 月 14 日 11:00 頃から一時的に処理を停止した。

2. 原因と処置

調査の結果、エプロンパンの変形が発生しており、エプロンパン同士が干渉して過負荷となっていた。エプロンパンの取付ボルトの伸びや脱落が確認されたことから、取付ボルトの伸びや脱落によりエプロンパンにガタつきが生じ、エプロンパンを変形させた可能性が考えられた。

変形したエプロンパンと取付ボルトの交換、及び弛み止めのために取付ボルトとナット の溶接を実施して、復旧した。

5月16日22:00頃、昇温を開始し、5月17日2:00頃、溶融処理を再開した。

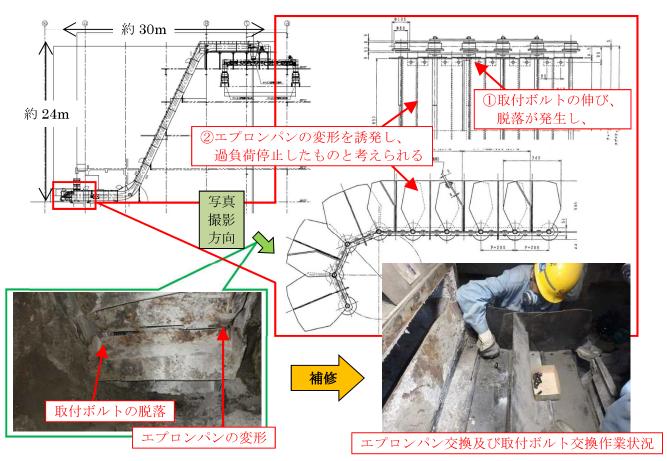


図3 1号第1溶融炉投入コンベヤ故障の状況

以上

溶融スラグの品質試験結果

1 概要

今回、第 41 回豊島廃棄物等管理委員会(H28.7.10 開催)にて審議・承認された「溶融スラグの品質試験結果を踏まえた今後の対応等」(資料 41・II/6・1)により、アルカリシリカ骨材反応性は、日常的に化学法、迅速法及びクリストバライト強度で管理することとなったことから、その後の試験結果を報告する。

2 試験結果

アルカリシリカ反応性試験において、化学法は Sc/Rc が 1.0 未満であれば「利用上支障なし(無害)」と判定され、モルタルバー法及び迅速法は、膨張率が 0.1%未満であれば「利用上支障なし(無害)」と判定される。また、スラグ保管上等の理由によりやむを得ず、迅速法が実施できない場合は、ロット毎にクリストバライトの強度を測定して、迅速法(普通(2.5%)スラグ 30)膨張率 0.050%に相当するクリストバライト強度(RIGAKU 製 RAD-X で 120CPS、RIGAKU 製 MultiFlex で 200CPS)以下の安全側で管理する。

H29 $3/27\sim6/5$ に発生した溶融スラグについて試験を実施した。迅速法等の結果を表 1 に、石英及びクリストバライトについて、X 線回析強度の比較を行った結果を図 1、2、3 に示す。

迅速法による試験結果は、普通ポルトランドセメントを用いて全アルカリ量を調整し、骨材は溶融スラグ 100%の場合は、膨張率が 0.1%を超える結果となった。溶融スラグ 30%の場合及び高炉セメントを用いた場合は、膨張率を 0.1%未満に抑えられている。

石英については、同程度の値となっており、クリストバライト強度(RIGAKU 製 RAD-X) については 120CPS 以下に、クリストバライト強度(RIGAKU 製 MultiFlex) については 200CPS に抑えられている。

以上のことから、溶融スラグを用いたコンクリート構造物において、アルカリ骨材反応が問題になるようなことはないものと考えられる。

表 1 溶融スラグの試験の結果

			酸素富化あ	り(鉄助剤)							
 試験方法	セメントの種類		試料採取	期間 ※2							
武员人力	(アルカリ調整) ※1	① H29 3/27~4/11	② H29 4/12~4/19	③ H29 4/20~4/27	④ H29 4/28~5/4						
		土壌比率79%	土壌比率82%	土壌比率82%	土壌比率82%						
	普通(2.5%) スラグ100	0.401%	0.323%	0.323%	0.337%						
迅速法	普通(2.5%) スラグ30	0.048%	0.035%	0.046%	0.043%						
	高炉(無調整) スラグ30	0.018%	0.018%	0.014%	0.017%						
化学法	Sc/Rc	0.67	0.64	0.60	0.63						
10千法	Sc、Rc[単位 mmol/ℓ]	60,90	56、88	62、103	64、101						
		酸素富化あり(鉄助剤)									
 試験方法	セメントの種類		試料採取期間 ※2								
武海火力力	(アルカリ調整) ※1	⑤ H29 5/5∼5/11	⑥ H29 5/12~5/20	⑦ H29 5/21~5/28	® H29 5/29∼6/5						
		土壌比率82%	土壌比率82%	土壌比率81%	土壌比率82%						
	普通(2.5%) スラグ100	0.299%	0.225%	0.297%	0.262%						
迅速法	普通(2.5%) スラグ30	0.029%	0.029%	0.033%	0.029%						
	高炉(無調整) スラグ30	0.013%	0.015%	0.015%	0.020%						
化学法	Sc/Rc	0.75	0.61	0.64	0.61						
化子还	Sc、Rc[単位 mmol/l]	64、85	60,98	61,96	61、100						

※1 アルカリ調整

1.2%: セメント量に対して全アルカリの量が 1.2%になるように調整 (モルタルバー法)

2.5%: セメント量に対して全アルカリの量が 2.5%に調整 (迅速法)

無調整: アルカリ量の調整を行わない

(スラグ 100: 溶融スラグ 100% 骨材、スラグ 30: 溶融スラグ 30% 骨材)

※2 ①~⑧の試料では、均質化物の溶流度試験の前処理方法を変更したため、助剤添加割合が低減している。

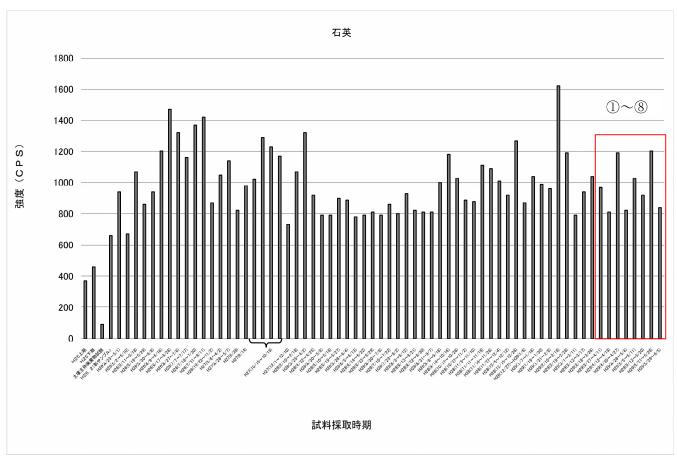


図1 溶融スラグ中の石英のX線回折強度 (RIGAKU 製 RAD-X)

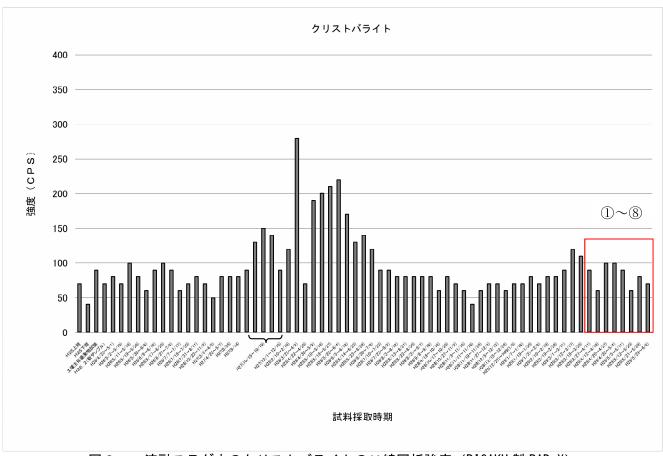


図2 溶融スラグ中のクリストバライトのX線回折強度(RIGAKU製RAD-X)

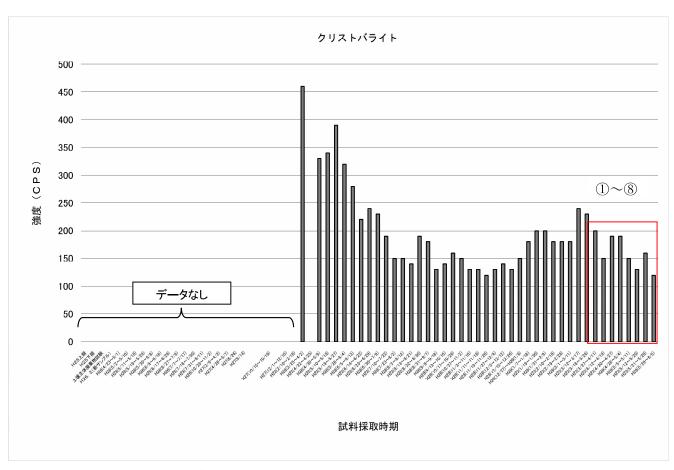


図3 溶融スラグ中のクリストバライトのX線回折強度(RIGAKU製 MultiFlex)

3 今後の対応

今後は、豊島・直島ピット内にある固着物の処理により生成される溶融スラグを、レディミクストコンクリート用骨材とする場合は、細骨材への置換率を 30%とし、さらに高炉セメントを使うといった抑制対策が講じられていることから、アルカリシリカ骨材反応性は、今後もスラグ 30%と高炉セメントを用いた迅速法試験結果で評価し、スラグ 30%で膨張率 0.10%未満であれば「利用上支障なし(無害)」として取り扱う。

また、スラグ保管上等の理由により迅速法試験が実施できない場合は、ロット毎にクリストバライトの強度を測定して、迅速法(普通(2.5%)スラグ 30)における膨張率 0.050%に相当するクリストバライト強度(RIGAKU 製 RAD-X で 120CPS、RIGAKU 製 MultiFlex で 200CPS)以下の安全側で管理することとし、迅速法試験での確認も適切に行う。

溶融スラグを使用したコンクリート構造物のモニタリング計画

1 概要

豊島溶融スラグを使用したコンクリート構造物の一部については、施工後 10 年程度経過した構造物について、現地調査および採取コアの分析を行い、第 35 回豊島廃棄物等管理委員会 (H26.7.27 開催)及び第 40 回豊島廃棄物等管理委員会 (H28.3.27 開催)にて報告した。これまでの調査の範囲においては、アルカリ骨材反応による劣化は認められていない。

しかし、溶融スラグを使用したコンクリート構造物については、長期的なモニタリングが必要と考えられることから、今後のモニタリング計画について検討した。

2 モニタリング計画

(1) 調査箇所

調査箇所については、表1のとおり、これまで平成25年度に3件、平成27年度に3件の構造物について調査を行っているが、今後これらを含めて調査対象構造物を選定する。

調査年度	工事名	構造物	調査箇所	工期
平成	①後山上川 通常砂防工事	砂防ダム流路工の 側壁	仲多度郡 まんのう町	H16.5∼ H17.3
2 5	②16災第1363号 県道塩江屋島西線 道路災害復旧工事	道路のもたれ擁壁	高松市東植田町	H17.9∼ H18.1
年度	③県道鹿庭奥山線 緊急地方道路整備 工事(道路災害防除) (第4工区)	道路のもたれ擁壁	木田郡三木町	H16.2∼ H17.1
平 成	④16災第313号 県道塩江屋島西線 道路災害復旧工事外(314)	道路のもたれ擁壁	高松市菅沢町	H17.2∼ H18.1
2 7	⑤梶羽川 通常砂防工事	砂防ダム	綾歌郡綾川町	H17.9∼ H18.3
年度	⑥(地方道路整備臨時交付金)県道三木 津田線 緊急地方道路整備工事	道路側壁	木田郡三木町	H16.10∼ H17.3

表1 これまでの調査対象構造物一覧

モニタリング対象構造物の選定のために、現在、これまでに豊島溶融スラグを利用した全ての構造物に関するデータベースを作成しているところである。

データベースは、それぞれの工事ごとに、構造物の種類、コンクリート強度、スラグの化学組成、 土壌比率等の情報について整理しているものであり、それらの情報を基に、構造物の種類やスラグ の利用時期といった条件の違いを考慮して、堺委員と協議のうえ、決定する予定である。

(2) 調査項目について

調査項目:構造物の外観目視観察及びコンクリートコアの採取

コンクリート構造物及びコアの外観観察

コンクリートコアの偏光顕微鏡観察

コンクリートコアの圧縮強度、静弾性係数の試験

コンクリートコアの促進膨張試験 (デンマーク法)

(3) 調査スケジュールについて

調査対象として選定する構造物の今後の調査時期については、堺委員と協議のうえ、決定する予定である。

【参考】 平成25年度、平成27年度の調査対象構造物(番号は、表1の番号)

図1 これまでの調査対象構造物の位置

写真3 ③の外観の状況

堆積物の除去・除染の業務委託先の決定

1. 概要

撤去等の実施にあたっては、第45回豊島廃棄物等管理委員会(平成29年4月16日開催)において承認されたとおり、堆積物の除去・除染作業等業務について県が発注仕様書を作成し、別紙1に示す「見積設計図書の審査項目、要求要件及び審査基準」を満たす者の中から入札により、2.のとおり受託者を決定した。

2. 堆積物の除去・除染作業等業務の受託者

(1) 豊島の中間保管・梱包施設及び特殊前処理物処理施設

受託者:㈱村上組

業務実施期間:平成29年6月30日から平成29年9月30日まで

(2) 直島の中間処理施設

受託者:㈱ピーエス三菱

業務実施期間:平成29年6月30日から平成30年3月20日まで

見積設計図書の審査項目、要求要件及び審査基準

		兄恨設計凶者の番箕垻日、安水安竹	
	審査項目	要求要件	審查基準
1	業務の基本方針	仕様書を踏まえ、本業務を進める上での基	業務の目的を的確に理解し、妥当な基本方
		本方針を記載すること。	針であること。
2	環境の保全に関す	仕様書を踏まえ、環境保全対策や環境計測	具体性があり、仕様書に記載の内容と矛盾
Z	事項	等の内容を具体的に記載すること。	がないこと。
3	安全の確保に関す	仕様書を踏まえ、作業従事者の安全管理の	具体性があり、作業上関係のある法令、条
る	事項	体制や実施方法及び必要な届出の内容等	例、規則等が遵守されており、仕様書に記
		を具体的に記載すること。	載の内容と矛盾がないこと。
4	業務の実施体制等		
4-1	実施体制、役割	業務の実施体制について、業務責任者、作	適切な役割分担等により実施体制が構築
	分担等	業従事者数、作業従事者の役割分担、内外	されていること。再委託者に業務の一部を
		部の協力体制等を図表にまとめること。	行わせる場合は、業務の根幹部分を見積設
			計図書の提出者が実施すること。再委託者
			の役割分担が明確で、適切であること。
4-2	業務責任者の兼	業務責任者の業務従事期間中における兼	業務責任者の兼任業務から、本業務におい
	任業務	任業務を記載すること。	て業務責任者が現場で従事する十分な時
			間があると認められること。
4-3	主たる作業従事	業務の実施に必要な資格について、主たる	業務の実施に必要な資格について、主たる
	者の資格	作業従事者の有する資格を記載すること。	作業従事者が資格を有していること。
5	L 業務の実施方法	<u> </u>	
5-1	仕様書第4章の	除去・除染作業に用いる機材等の台数や仕	具体性があり、実施可能な内容であるこ
	1. の業務**1	様等を含め、具体的な作業方法を記載する	と。仕様書に記載の内容と矛盾がないこ
		こと。また、設備等ごとの具体的な作業方	と。機材等の台数や仕様等が記載されてい
		法及び作業順序を記載すること。	ること。各設備等の作業順序が記載されて
			いること。
5-2	仕様書第4章の	除染作業に伴う排水管理の方法及び1日	具体性があり、実施可能な内容であるこ
	2. の業務 ^{※2}	の洗浄水の使用量についての計画を記載	と。汚泥の発生を抑制するための具体的な
		すること。	方法が記載されていること。
5-3	仕様書第4章の	具体的な作業内容及び作業方法を記載す	具体性があり、実施可能な内容であるこ
	3.~4.の業務※3	ること。	と。
5-4	仕様書第4章の	除染等廃棄物の集積方法に関し、具体的な	具体的な作業方法が記載されており、実施
	5. の業務**4	作業方法を記載すること。	可能な内容であること。
6	業務スケジュール	業務スケジュールを工程表及びフロー図	業務スケジュールが実施可能で妥当なも
		を用いて記載すること。	のであること。また、工程表及びフロー図
			で記載されていること。
\ \			1 2.9 乳供学からの佐動油学の同胞 アフベフ

^{※1} 堆積物の除去・除染作業等 ※2 除染作業に伴う排水管理 ※3 設備等からの作動油等の回収、アスベスト・リフラクトリーセラミックファイバー・フロン類への対応 ※4 除染等廃棄物の集積

堆積物の除去・除染の実施状況

1. これまでの実施状況

堆積物の除去・除染の実施にあたっては、資料 II / 7-1 のとおり受託者を決定した。 現在、受託者が作成し県に提出する「堆積物の除去・除染実施計画」の内容について、県 との間で協議を重ねているところである。

なお、豊島・直島ピットに固着した堆積物の除去及び設備等のスラグ流しについては、 溶融助剤との均質化作業や設備等の運転を含むことから、これまで豊島廃棄物等の処理を 実施してきたクボタ環境サービス㈱に委託して作業を実施済みである。

2 堆積物の除去 除染実施計画

「堆積物の除去・除染実施計画」は、仕様書に基づき、業務の実施体制や具体的な作業方法及び作業工程等を記載したものである。

第44回豊島廃棄物等管理委員会(平成29年1月29日開催)において承認された「豊島中間保管・梱包施設等の撤去等に関する基本方針、同基本計画、ガイドライン及びマニュアル」に従い、県が仕様書を作成し発注していることから、「堆積物の除去・除染実施計画(案)」について県が審査し、豊島事業関連施設の撤去等検討会に諮り、各委員のご了承を得たうえで県が承認するものとする。

なお、今後、「堆積物の除去・除染実施計画(案)」について検討会委員にご確認いただく 予定としており、7月中旬以降に作業を開始することとしたい。

3. 今後の実施予定

撤去等の実施にあたってのスケジュールについて、別紙1のとおり示す。

今後、豊島及び直島の施設について除去・除染作業を実施するとともに、解体撤去工事 の発注についても手続きを進める予定としている。 撤去等の実施にあたってのスケジュール

<u> 撤去</u>	等の実	他に	<u> あた</u>	つて	のスケ	<u> アン-</u>	<u> </u>	レ																							
			28	年度							29호	F度											304	F度						314	年度
		12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
及び特殊前処理物豊島の中間保管・	除去・除染 堆積物の					• 4/	● 公告・	入札()	実施済》 	去、 スラ・		(実施	済)																		
7処理施設 超色施設	解 工体 事撤 去								• 4	├── ● 公告 • <i>7</i> 	入札	•	 撤去	 	•																
直島	除去・除染堆積物の					• 4/	● 公告•	入札(穿)	実施済》 	 除去、ス ● ● 	.ラグ流 -	TU(実) () () () () () () () () () (•														
の中間処理施設	解体撤去工事					•		実施	設計		•		•	公告•	入札		•				撤去	工事				•		::::::::::::::::::::::::::::::::::::::	•		

施設の撤去等に係る環境計測の実施計画

1. 実施計画

施設の撤去等に係る環境計測については、施設の撤去等に係る環境計測ガイドライン及び 同マニュアルに基づき、表 1 及び表 2 のとおり県が実施することとしており、具体的な実施 時期については 2 のとおり計画している。

				31 No. 17 d		
区分	計測地点	計測項目		計測頻度		調査
四月	可例地点	日 例 存 日	実施前	実施期間中	実施後	機関
排気	排気ファン 出口	ダイオキシン類、PCB、 鉛及びその化合物、粉じん		1回以上	_	
騒音	施設の 境界	L50、L5、L95、Leq	1回	1回以上	1回	
振動	施設の 境界	L50、L10、L90	1回	1回以上	1 回	
悪臭	施設の 境界	アンモニア、メチルメルカフ [°] タン、硫化水素、硫化メ チル、二硫化メチル、トリメチルアミン、アセトアルテ [°] ヒト [°] 、イ フ [°] ロヒ [°] オンアルテ [°] ヒト [°] 、ノルマルフ [°] チルアルテ [°] ヒト [°] 、イ ソフ [°] チルアルテ [°] ヒト [°] 、ノルマルハ [°] レルアルテ [°] ヒト [°] 、イソハ [°] レルアルテ [°] ヒト [°] 、イソフ [°] タノール、酢酸エチル、メチルイ ソフ [°] チルケトン、トルエン、スチレン、キシレン、フ [°] ロヒ [°] オ ン酸、ノルマル酪酸、ノルマル吉草酸、イソ吉草酸	1 回	1回以上	1 回	県

表 1 施設の撤去等に係る環境計測(豊島)

※排水は、高度排水処理施設で処理を行うこととしており、第 45 回管理委員会資料 2 - 3 「平成 29 年度における各種調査の実施方針」に従い、豊島の環境計測において確認する。

表っ	施設の	勘 夫 等 l	一体ス	環境計測	(直 色)
1X Z	ル心言又ひり	ᄣᅭᆓᆝ	~ IT へ) 人足 ノ兄・ロー・パリ	

区分	計測地点	計測項目		計測頻度		調査
四男	可例地点	口侧切口	実施前	実施期間中	実施後	機関
排気	排気ファン 出口	ダイオキシン類、PCB、 鉛及びその化合物、粉じん		1回以上		
排水	排水口	水素イオン濃度(pH)、浮遊物質量(SS)、 生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、全窒素、全燐、大腸菌群数、ダイオキシン類、PCB、カドミウム及びその化合物、鉛及びその化合物、砒素及びその化合物、六価クロム化合物、アルキル水銀化合物、水銀及びアルキル水銀その他の水銀化合物、セレン及びその化合物、フッ素、ホウ素	1	2 回以上	_	
騒音	施設の 境界	L50、L5、L95、Leq	1回	1回以上	_	県
振動	施設の 境界	L50、L10、L90	1 回	1回以上	_	
悪臭	施設の 境界	アンモニア、メチルメルカフ。タン、硫化水素、硫化メチル、二硫化メチル、トリメチルアミン、アセトアルテ゛ヒト゛、フ゜ロピ オンアルテ゛ヒト゛、ノルマルフ゛チルアルテ゛ヒト゛、イソフ゛チルアルテ゛ヒト゛、イソハ゛レルアルテ゛ヒト゛、イソフ゛タノール、酢酸エチル、メチルイソフ゛チルケトン、トルエン、スチレン、キシレン、フ゜ロピ オン酸、ノルマル酪酸、ノルマル吉草酸、イソ吉草酸	1 回	1 回以上	_	

2. 実施時期

環境計測の実施時期は、豊島については表3、直島については表4のとおり計画している。

表3 実施時期(豊島、平成29年度)

区分	計測地点	実施前			除	実施期間中 除去・除染 解体撤去							実施 後
平成29年度		4	5	6	7	8	9	10	11	12	1	2	3
排気	排気ファン 出口				0				0*				
騒音	施設の 境界			0	0				0				0
振動	施設の 境界			0	0				0				0
悪臭	施設の 境界			0	0				0				0

[※]解体・撤去の実施状況に応じて、計測地点を適宜変更して実施する。

表4 実施時期(直島、平成29~30年度)

区分	計測地点	実加	実施期間中 除去・除染									
平成	29年度	4 5	6	7	8	9	10	11	12	1	2	3
排気	排気ファン 出口	_	_		0				0			
排水	排水口	_	_		0				0			
騒音・ 振動・ 悪臭	施設の 境界			0	0							

区分	計測地点						系施期に 解体・排						実施 後
平成30年度		4	5	6	7	8	9	10	11	12	1	2	3
排気	排気ファン 出口		0*										_
排水	排水口		0										
騒音· 振動· 悪臭	施設の 境界		0										_

[※]解体・撤去の実施状況に応じて、計測地点を適宜変更して実施する。

豊島廃棄物等処理事業フォローアップ委員会の設置要綱等

「豊島廃棄物等処理事業フォローアップ委員会」並びにその内部組織として設置する「豊島処分地地下水・雨水等対策検討会」及び「豊島事業関連施設の撤去等検討会」について、設置要綱(案)を別紙1~別紙3のとおり示す。

「豊島廃棄物等処理事業フォローアップ委員会」設置要綱(案)

(設置)

- 第1条 豊島廃棄物等処理施設撤去等事業(以下「事業」という。)の実施にあたり、 廃棄物等の豊島からの搬出終了後の地下水及び雨水の管理及び対策、中間 処理施設及び豊島内施設の管理並びに施設撤去に係る計画の策定及び実施、 さらに各種の試験、計測、モニタリング等において、指導、助言、評価等を得るた め、豊島廃棄物等処理事業フォローアップ委員会(以下「委員会」という。)を置く。 (所掌事務)
- 第2条 委員会は、地下水及び雨水の管理及び対策、中間処理施設及び豊島内施設の管理並びに施設撤去に係る計画の策定及び実施、さらに各種の試験、計測、モニタリング等に係わる下記の事項について指導、助言、評価等を行うとともに、必要に応じて豊島廃棄物等管理委員会での決定事項の見直しを行い、その結果を知事に報告する。
 - (1)事業の全体計画及び年度計画の策定及び改訂
 - (2)事業の進捗状況の確認
 - (3) 豊島処分地の地下水及び雨水の管理と対策等
 - (4)中間処理施設及び豊島内施設の管理並びに施設撤去に係る計画の策定 及び実施等(海上並びに陸上輸送の管理を含む)
 - (5) 豊島処分地の管理
 - (6)溶融スラグの品質管理及び溶融スラグを使用したコンクリート構造物の経年 変化の確認
 - (7)事業に係る各種の試験、環境計測及び周辺環境モニタリングの実施と結果の評価
 - (8)事業の進捗に伴って実施する各種工事の施工計画の策定、管理及び完了確認
 - (9)各種ガイドライン及びマニュアル等の作成及び改訂
 - (10) 異常時等の対応
 - (11) その他必要な事項

(組織)

- 第3条 委員会は、委員10人以内で組織する。
- 2 委員は、学識経験を有する者のうちから、知事が委嘱する。
- 3 委員の任期は、委嘱の日から平成32年3月31日までとする。

- 第4条 委員会は、第2条各号に掲げる事項のうち必要と認めるものについて指導、助言及び評価等を行わせるために、委員会の内部に検討会を設置できる。
- 2 検討会は、委員又は技術アドバイザーで組織する。
- 3 検討会が、その分掌事務に属する事項について審議を要請したときは、委員会は、当該事項に関する審議を行い、検討会からの要請に応えなければならない。 (委員長及び副委員長)
- 第5条 委員会に委員長及び副委員長1人を置く。
- 2 委員長及び副委員長は、それぞれ委員が互選する。
- 3 委員長は、会務を総理する。
- 4 副委員長は、委員長を補佐し、委員長に事故があるときは、その職務を代理する。 (会議)
- 第6条 委員会は、委員長が招集し、委員長がその議長となる。
- 2 委員会は、委員の半数以上が出席しなければ、会議を開くことができない。
- 3 委員会は、毎年2回以上開催するものとする。
- 4 委員長は、必要があると認めるときは、第8条に規定する委員以外の技術アドバイザーに対し、委員会へ出席し、審議、検討に参加するよう求めることができる。

(会議の傍聴)

第7条 調停条項7項の規定に基づき設置する豊島廃棄物処理協議会の会長及び会長代理、環境のまち・直島推進委員会の委員長及び副委員長並びに土庄町豊島及び直島町のそれぞれの代表者は、委員会の会議を傍聴するとともに、意見を述べることができる。

(会議の公開)

- 第8条 委員会の会議は、原則として公開する。
- 第9条 委員会の会議において審議のうえ了承された事項については、公開する。 (技術アドバイザー)
- 第10条 特定の専門分野や急を要する事態への対処等に当たって指導、助言等 を得るため、必要と認められる場合に技術アドバイザーを置く。
- 2 技術アドバイザーは、委員以外で学識経験を有する者のうちから、知事が委員長と協議して委嘱する。

(通知)

第11条 技術アドバイザーへの報告、相談及び技術アドバイザーからの指導、助言等については、速やかにその内容を委員会、土庄町豊島の代表者及び直島町に通知する。

(守秘義務)

第12条 委員及び技術アドバイザーは、職務上知り得た秘密を漏らしてはならない。

その職を退いた後も、同様とする。

(委員の報酬等)

第13条 委員及び技術アドバイザーの報酬及び費用弁償は、附属機関を構成する委員その他の構成員の報酬等に関する条例(昭和32年香川県条例第43号) 別表第1号に規定する香川県産業廃棄物審議会委員の報酬及び費用弁償に 準じて、支給する。ただし、特別の事情があるときは、別段の取扱いをすることができる。

(庶務)

第14条 委員会の庶務は、環境森林部廃棄物対策課において処理する。

(雑則)

第15条 この要綱に定めるもののほか、委員会の運営に関し必要な事項は、委員 長が委員会に諮って定める。

附則

この要綱は、平成29年7月9日から施行する。

豊島廃棄物等処理事業フォローアップ委員会委員及び技術アドバイザー 名簿(案)

(任期:平成32年3月31日まで)

т п			ップ委員会
氏 名	所属及び職名 	委員	技 術 アドバイザー
永 田 勝 也	早稲田大学 名誉教授	0	0
武田信生	京都大学 名誉教授	0	0
岡 市 友 利	香川大学 名誉教授	0	0
河 原 長 美	岡山大学 名誉教授	0	0
堺 孝司	日本サステイナビリティ研究所 代表	0	0
鈴 木 三 郎	神戸大学 名誉教授	0	0
高月 紘	京エコロジーセンター 館長	0	0
中杉修身	国立研究開発法人国立環境研究所 環境リスク・健康研究センター 客員研究員	0	0
松島 学	香川大学 工学部安全システム建設工学科 教授	0	0
猪熊明	一般社団法人全国土木施工管理技士会連合会 顧問		0
嘉門 雅史	京都大学 名誉教授		0
河原能久	広島大学 大学院工学研究科 教授		0
田中勝	岡山大学 名誉教授		0
富田栄二	岡山大学 大学院自然科学研究科 教授		0
長谷川修一	香川大学 工学部安全システム建設工学科 教授		0
平田健正	放送大学和歌山学習センター 所長		0
宮 本 慎 宏	香川大学 工学部安全システム建設工学科 准教授		0
門谷茂	北海道大学 大学院水産科学研究院 教授		0
山 中 稔	香川大学 工学部安全システム建設工学科 教授		0
横瀬廣司	香川大学 名誉教授		0

「豊島処分地地下水・雨水等対策検討会」設置要綱(案)

(目的)

第1条 豊島処分地の地下水及び雨水の管理及び対策、水処理の実施等について検討するため、「豊島廃棄物等処理事業フォローアップ委員会」(以下「フォローアップ委員会」という。)の内部組織として、「豊島処分地地下水・雨水等対策検討会」(以下「検討会」という。)を設置する。

(任務)

- 第2条 検討会は、フォローアップ委員会の所掌事務のうち、次の各号に掲げる事項について、指導、助言及び評価等を行うとともに、フォローアップ委員会の諮問に応じて審議を行い、その結果をフォローアップ委員会に答申する。
 - (1) 豊島処分地の地下水及び雨水の管理と対策等
 - (2)上記(1)に係る各種の試験、環境計測及び周辺環境モニタリングの実施と結果の評価
 - (3)上記(1)に係る各種工事の施工計画の策定、管理及び完了確認
 - (4)上記(1)に係る各種ガイドライン及びマニュアル等の作成及び改訂
 - (5)上記(1)に係る異常時等の対応
 - (6) その他必要な事項

(組織)

- 第3条 検討会は、別表に掲げる者をもって構成する。
- 2 座長は、別表に掲げる者の互選により定める。
- 3 座長は、現場関係者の出席を求めるほか、必要に応じ、別表に掲げる者以外の者を検討 会に参加させることができる。

(会議)

- 第4条 検討会の会議は、必要に応じて随時開催するものとする。
- 2 検討会の会議は、座長が招集し、座長がその議長となる。
- 3 座長は、必要があると認めるときは、フォローアップ委員会の委員長に対し、フォローアップ委員会で第2条各号に掲げる事項を審議するよう要請することができる。

(傍聴)

第5条 豊島廃棄物処理協議会の会長及び会長代理、環境のまち・直島推進委員会の委員長 及び副委員長並びに土庄町豊島及び直島町のそれぞれの代表者は、検討会の会議を傍聴す るとともに、意見を述べることができる。

(会議の公開)

- 第6条 検討会の会議は、原則として公開する。
- 第7条 検討会の会議において審議のうえ了承された事項については、公開する。 (報酬等)
- 第8条 別表に掲げる者の報酬及び費用弁償は、附属機関を構成する委員その他の構成員の報酬等に関する条例(昭和32年香川県条例第43号)別表第2に規定する香川県産業廃棄物審議会委員の報酬及び費用弁償に準じて支給する。ただし、特別な事情があるときは、別段の取扱いをすることができる。

(庶務)

- 第9条 検討会の庶務は、環境森林部廃棄物対策課において処理する。 (その他)
- 第10条 この要綱に定めるもののほか、検討会の運営に関し必要な事項は、座長が検討会並 びにフォローアップ委員会に諮って定める。

附則

この要綱は、平成29年7月9日から施行する。

(別表)

豊島処分地地下水・雨水等対策検討会委員名簿

氏 名	所属及び職名
岡市 友利	香川大学名誉教授
河 原 長 美	岡山大学名誉教授
鈴木 三郎	神戸大学名誉教授
中杉修身	国立研究開発法人国立環境研究所 環境リスク・健康研究センター 客員研究員
嘉 門 雅 史	京都大学名誉教授
河原能久	広島大学大学院工学研究院教授
平田健正	放送大学和歌山学習センター所長

「豊島事業関連施設の撤去等検討会」設置要綱(案)

(目的)

第1条 中間処理施設及び豊島内施設の管理並びに施設撤去に係る計画の策定及び実施に関する検討のため豊島廃棄物等処理事業フォローアップ委員会(以下「フォローアップ委員会」という。)の内部組織として、「豊島事業関連施設の撤去等検討会」(以下「検討会」という。)を設置する。

(任務)

- 第2条 検討会は、フォローアップ委員会の所掌事務のうち、次の各号に掲げる事項について、指導、助言及び評価等を行うとともに、フォローアップ委員会の諮問に応じて審議を行い、その結果をフォローアップ委員会に答申する。
 - (1)中間処理施設及び豊島内施設並びに豊島処分地の管理
 - (2) 同上施設の施設撤去に係る計画の策定及び実施等(海上並びに陸上輸送の管理を含む)
 - (3)上記(1)及び(2)に係る各種の試験、環境計測及び周辺環境モニタリングの実施と結果 の評価
 - (4)上記(1)及び(2)に係る各種工事の施工計画の策定、管理及び完了確認
 - (5)上記(1)及び(2)に係る各種ガイドライン及びマニュアル等の作成及び改訂
 - (6)上記(1)及び(2)に係る異常時等の対応
 - (7) その他必要な事項

(組織)

- 第3条 検討会は、別表に掲げる者をもって構成する。
- 2 座長は、別表に掲げる者の互選により定める。
- 3 座長は、現場関係者の出席を求めるほか、必要に応じ、別表に掲げる者以外の者を検討 会に参加させることができる。

(会議)

- 第4条 検討会の会議は、必要に応じて随時開催するものとする。
- 2 検討会の会議は、座長が招集し、座長がその議長となる。
- 3 座長は、必要があると認めるときは、フォローアップ委員会の委員長に対し、フォローアップ委員会で第2条各号に掲げる事項を審議するよう要請することができる。

(傍聴)

第5条 豊島廃棄物処理協議会の会長及び会長代理、環境のまち・直島推進委員会の委員長 及び副委員長並びに土庄町豊島及び直島町のそれぞれの代表者は、検討会の会議を傍聴す るとともに、意見を述べることができる。

(会議の公開)

- 第6条 検討会の会議は、原則として公開する。
- 第7条 検討会の会議において審議のうえ了承された事項については、公開する。 (報酬等)
- 第8条 別表に掲げる者の報酬及び費用弁償は、附属機関を構成する委員その他の構成員の報酬等に関する条例(昭和32年香川県条例第43号)別表第2に規定する香川県産業廃棄物審議会委員の報酬及び費用弁償に準じて支給する。ただし、特別な事情があるときは、別段の取扱いをすることができる。

(庶務)

第9条 検討会の庶務は、環境森林部廃棄物対策課において処理する。

(その他)

第10条 この要綱に定めるもののほか、検討会の運営に関し必要な事項は、座長が検討会並 びにフォローアップ委員会に諮って定める。

附則

この要綱は、平成29年7月9日から施行する。

(別表)

豊島事業関連施設の撤去検討会委員名簿

氏 名	所属及び職名
永田勝也	早稲田大学名誉教授
武田信生	京都大学名誉教授
高月 紘	京エコロジーセンター館長 京都大学名誉教授
松島 学	香川大学 工学部安全システム建設工学科 教授
氏家睦夫	労働衛生コンサルタント 医学博士

環境計測及び周辺環境モニタリングの結果

1. 環境計測

- (1) 豊島における環境計測(地下水調査)結果について・・・・・・平成29年4月、5月及び6月調査
 - ・観測井3地点(A3、B5、F1西)についてはこれまでの調査結果と特段の差異は見られなかった。
 - ・D 測線西側の観測井については、揚水井の設置時に環境基準値を満足していなかった 5 項目 (トリクロロエチレン、塩化ビニルモノマー、1,2-ジクロロエチレン、ベンゼン及び 1,4-ジオキサン) についてのモニタリングを平成 26 年 4 月から実施している。浅井戸については、6 月調査において (B+40, 2+10) でベンゼンが排水基準値を超過していた他は排水基準値を満足していた。深井戸についてはどの地点についても排水基準値を超過していた項目があった。

2. 周辺環境モニタリング

・事前環境モニタリングをはじめとするこれまでの調査結果と比べて、特段の差異は見られなかった。

豊島における環境計測(地下水調査)結果について

地下水の環境計測は、工事の進捗に伴う水質の推移を把握することを目的としている。今回、平成 29年5月に実施した水質調査結果をとりまとめた。

1 調査の概要

(1)調査日

平成 29 年 5 月 23 日(火)

(2)調查地点(調查地点図参照)

観測井 3地点

(A3、B5、F1西)

(3) 検体採取機関及び分析機関

採取機関:廃棄物対策課、環境保健研究センター、直島環境センター

分析機関:環境保健研究センター

- 2 調査結果の概要 (表 1~3)
- ・ 観測井3地点全てにおいて、これまでの調査結果と比較して特段の差異は見られなかった。
- ・ それぞれの観測井において、次の項目が環境基準値を満足しなかった。

観測井A3 : 砒素及びその化合物、クロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン

観測井B5 : フッ素及びその化合物、ホウ素及びその化合物、1,4-ジオキサン

観測井F1西: 砒素及びその化合物

表1 地下水調査結果 (A3地点の推移)

調査地点											Α	3											地下水の	検出
凋查年月日	H15.2.6	H16.2.5	H17.2.7	H18. 2. 28	H19.2.1	H20.2.13	H21.2.17	H22.2.16	H23. 2. 9	H23. 6. 14	H23.8.3	H23.11.22	H24.2.1	H24.5.16	H24.8.1	H24. 11. 19	H25.2.5	H25.5.22	H25.7.29	H25. 11. 13	H26.3.17	H26. 5. 13	環境基準	下限
рН	7.0	7. 1	6.9	7. 1	7.0	6.8	7.0	7.2	6. 9	6.8	6. 7	6.7	6. 9	6.6	6.8	6.9	6. 9	6.8	6.8	6.6	9.8	11.4	_	
BOD	7.5	12	0.8	4.3	0.7	0.9	ND	1.4	1.0	ND	1.0	1.0	0.8	ND	ND	0.8	1.3	1.3	ND	ND	1.0	ND	-	- C
COD	32	70	17	18	10	21	3.1	3.7	5. 7	5. 6	3. 7	5.1	3.8	7.0	5.0	4.1	3.4	7. 9	3.5	4.2	8.4	7.2	-	- (
大腸菌群数	13	33	33	7.8	ND	ND	ND	ND	ND	ND	2	7.8	ND	ND	11	13	ND	350	2	7.8	ND	ND	_	
油分	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	1.1	0.6	_	- (
カト゛ミウム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003 (注6)	0.00
全シアン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND) (
有機燐	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	_	-
鉛	ND	<u>0. 1</u>	<u>0.015</u>	ND		ND	ND	ND	0.006	ND	0.008	-	ND	0.008	0.008	ND	ND		ND	ND	ND	ND	0.01	0.
六価クロム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.05	
砒素	0.56	0.73	0.40	1.1	0.42	0.59	0.31		<u>1. 2</u>	<u>0.26</u>	<u>0.55</u>		0.70	<u>1. 0</u>	<u>0.54</u>	0. 27	0, 13		0.21	<u>0.56</u>	0.49	<u>0.26</u>	0.01	. 0.
総水銀	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	0, 0005	
アルキル水銀	ND	ND		ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	+
PCB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0
シ゛クロロメタン	ND	ND		ND		ND	ND	ND	ND	ND	ND	 	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.02	+
四塩化炭素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	0.0006	ND	0,002	0.0
クロロエチレン ^(注8)				_	_				_	0.0034	0.0063	0.0044	0.0090	0.0040	<u>0.017</u>	0.0023	<u>0.0034</u>	<u>0.0035</u>	<u>0.0032</u>	ND	ND	<u>0.0022</u>	0.002	0.0
1, 2-シ゛クロロエタン	<u>0.21</u>	<u>0.018</u>	0.029	0.018		0.0082	0.0053	0.0019	0.0007	<u>0.0066</u>	0.010		0.0032	<u>0.0057</u>	<u>0.0079</u>	0.0045	0.0036	0.0033	0.0037	0.0050	0.0020	0.0031	0.004	0.0
1, 1-ジクロロエチレン	<u>0.054</u>	0.009	0.011	0.004	0, 003	ND	ND	ND	0.005	0.007	0.011	0.004	0.002	0.003	0.002	0.004	ND	ND	0.002	0.002	ND	ND	0.1 (注4)	
1,2-ジクロロエチレン (注5)	1.7	<u>0.32</u>	<u>0.33</u>	<u>0.11</u>	<u>0. 071</u>	0.047	0.033	0.022	<u>0.047</u>	0.046	0.032	0.030	0.037	0.021	0.024	0.022	0.019	0.010	0.022	0.015	ND	0.022	0.04	0.
1, 1, 1ートリクロロエタン	0.21	0.023	0.025	0.011	0.007	0.0036	0.0018	0.0011	0.0072	0.011	0.023	0.0096	0.0029	0.0039	0.0083	0.0025	0.0019	0.0011	0.0055	0.0049	ND	0.0021	1	0.0
1, 1, 2-トリクロロエタン	ND	0.0007	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.0
トリクロロエチレン	<u>0.15</u>	0.010	<u>0.017</u>	0.022	<u>0.019</u>	<u>0.011</u>	0.006	0.007	0.042	0.043	0.066	0.027	<u>0.016</u>	<u>0.021</u>	<u>0.033</u>	0.0026	0.010	0.007	<u>0.020</u>	0.015	0.002	<u>0.016</u>	0.01 ^(注7)	0.
テトラクロロエチレン	0.022	<u>0.011</u>	<u>0.034</u>	0.0027	0.0012	0.0014	ND	0.0006	0.0007	0.0057	0.081	0.014	0.0007	0.0014	0.0013	0.0014	0.0007	ND	0.0006	0.0007	ND	ND	0.01	0.0
1, 3-ジクロロプロペン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0
チウラム	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	0.006	0.
シマシ゛ン	ND	ND		ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	0.003	0.0
チオヘ゛ンカルフ゛	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	<u> </u>	ND	ND	ND	ND	ND		ND	ND	ND	ND	0. 02	2 0.
^*'>'t'\	0.053	0.012	0.012	0.005	0.002	0.002	ND	ND	ND	ND	ND	-	ND	ND	<u>0.014</u>	<u>ND</u>	ND		<u>0.059</u>	ND	ND	ND	0.01	. 0.
セレン	ND	ND	0.010	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND		ND	ND	ND	ND	0. 01	0.
硝酸性窒素及び亜硝酸性窒素	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	10	+
フッ素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	1.0	ND	0.8	+
おり素	0. 7	0. 5	0.4	0. 3	0. 3	0. 2	0. 2	0. 2	0.5	0. 1	0. 1	0.3	0. 2	0. 2	0. 2	0. 2	0. 2	0. 2	ND	0.1	0.3	0. 2	1	
1, 4-ジオキサン			-	_					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0, 05	0.
全窒素	4	3	1.6	3	1	1	I VID	5	3	1	1	1	2	4	1	1	l I	1	1	ND	ND	2		₩
全燐	0. 5	ND	0.2	1.0	ND	ND	ND	ND	ND	ND	ND		0. 2	ND	0. 2	ND	ND		0. 2	ND	ND 40	ND	-	1
塩化物イオン	68	39	28	23	37	29	16.0	28	21	25	31	 	32	20	33	31	33	41	38	40	48	57	_	₩
電気伝導率	51. 3	40	32 ND	29. 5	14. 6	16. 1	16. 2	15	16	32. 7	30		30.8	30.8	32 ND	30	30		30	31 ND	32 ND	87 ND	_	
ニッケル	ND	0. 08	ND 0.016	ND	ND	ND 0.000	ND 0.000	ND	ND	ND	ND		ND 0.000	ND	ND	ND	ND 0.044	ND 0.016	ND 0.010	ND 0.010	ND 0.10	ND 0.000	_	- (
* モリフ゛テ゛ン - ス・イェン	ND	ND	0.016	ND	ND 0.000	0.008	0.026	0.022	ND	ND	0. 028	-	0.038	0.022	ND	0.008	0.044	0.016	0.013	0.019	0.12	0. 098	_	0.
アンチモン	ND	0.002	0.005	0.002	0.002	0.003	ND	ND	ND	ND	ND	-	0.004	ND	ND	0.001	ND		0.001	ND	0.004	ND	-	0.
フタル酸ジエチルヘキシル (注1)単位は、pH(-)、	ND	ND	ND	ND	ND	0,015	ND	ND	0.046	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.

(注2)ND:検出せず

⁽注3)下線は地下水の環境基準を超過しているもの。

⁽注4)環境省通知に基づき、環境基準を変更した。(平成22年1月調査までの環境基準値は0.02mg/Lである。)

⁽注5)環境省通知に基づき、シス体及びトランス体を合わせて1つの地下水環境基準項目となったため、名称を変更した。 (平成22年1月調査までは、シス体のみ調査を実施した。)

⁽注6)環境省通知に基づき、環境基準を変更した。(平成24年1月調査までの環境基準値は0.01mg/Lである。)

⁽注7)環境省通知に基づき、環境基準を変更した。(平成26年7月調査までの環境基準値は0.03mg/Lである。)

⁽注8)環境省通知に基づき、名称を変更した。(平成29年3月調査までは塩化ビニルモノマーである。)

表1 地下水調査結果 (A3地点の推移)

調	坒 地点						A	3						地下水の	検出
調		H26.7.29	H26.11.25	H27. 2. 16	H27.5.19	H27.9.17	H27.11.24	H28.2.9	H28. 5. 24	H28. 7. 26	H28.11.8	H29.1.30	H29. 5. 23	環境基準	下限
	рН	7.0	7.0	7.0	6.8	7.5	7.0	6.8	6.7	7.8	7. 1	7.5	7.1	-	-
	BOD	ND	1.3	22	0.8	0.6	ND	1.4	0.6	1.8	1.8	0.5	1.4	-	0.5
般項	COD	5. 2	6.3	49	11	6.5	5.6	5. 7	5.0	6.7	5.1	9.0	7. 5	_	0.5
I i	大腸菌群数	280	11	ND	ND	23	ND	7.8	ND	ND	ND	ND	ND	-	-
	油分	ND	0.8	ND	ND	ND	0.8	ND	ND	ND	0.6	0.9	ND	_	0.5
	カト゜ミウム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003 (注6)	0.0003
	全シアン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1
	有機燐	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	0.1
	鉛	ND	ND	ND	ND	ND	ND	ND	0.010	0.014	ND	ND	ND	0.01	0, 005
	六価クロム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.05
	砒素	0.16	0.22	0.68	<u>29</u>	0.64	0.38	0.45	<u>1. 1</u>	7.6	0.20	0.47	3.9	0.01	0.005
	総水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005	0.0005
	アルキル水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005
	PCB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005
	シ゛クロロメタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.002
	四塩化炭素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0018	0.002	0.0002
/edu	クロロエチレン ^(注8)	0.0018	0.012	0.018	0.0059	0.017	0.0061	0.0076	0.0052	0.0054	0.0056	0.0014	0.012	0.002	0.0002
健	1,2-ジクロロエタン	0.0010	0.016	0.0072	0.016	0.0062	0.0083	<u>0.0097</u>	<u>0.0094</u>	0.015	0.0070	0.0035	0.0083	0.004	0.0004
康	1, 1-ジクロロエチレン	0.005	ND	0.008	0.010	0.002	0.002	0.006	0.008	0.013	0.004	0.002	0.002	0.1(注4)	0.002
١.	1,2-ジクロロエチレン ^(注5)	0.054	0.12	0.056	0.082	0.046	0.034	0.027	0.029	0.037	0.020	0.011	0.021	0.04	0.004
項	1, 1, 1-トリクロロエタン	0.016	0.041	0.011	0.029	0.010	0.010	0.017	0.030	0.049	0.014	0.0087	0.011	1	0.0005
l	1, 1, 2-トリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.0006
1	トリクロロエチレン	0.033	0.098	0.058	0.091	<u>0.062</u>	0.049	0.078	<u>0.10</u>	0.15	0.065	0.039	0.059	0.01(注7)	0.001
	テトラクロロエチレン	0.0020	0.0053	0.0059	0.0092	0.0015	0.0028	0.0026	0.0034	0.0044	0.0017	0.0007	0.0013	0.01	0.0005
	1,3-ジクロロプロペン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
	チウラム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.001
	シマシ゛ソ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	0.0003
	チオヘ゛ンカルフ゛	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.002
	ベンゼン	ND	ND	0.002	ND	0.008	ND	ND	ND	ND	ND	ND	ND	0.01	0.001
	セレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.005
	硝酸性窒素及び亜硝酸性窒素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	10
	フッ素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8	0.8
	ホウ素	0.3	0.2	0.3	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1	1	0.1
	1,4-ジオキサン	ND	0.005	ND	0.008	0.017	0.005	ND	0.005	0.005	ND	ND	ND	0.05	0.005
	全窒素	1	ND	2	2	2	1	1	1	2	2	5	2	-	1
そ	全燐	ND	ND	0.4	0.4	ND	ND	ND	ND	0.9	ND	ND	0.4	-	0.1
の	塩化物イオン	53	54	50	46	61	49	48	47	50	33	37	70	-	1
他	電気伝導率	40.9	50.3	43. 7	30.8	52.5	41.3	39. 2	38. 4	38.0	34.0	39.6	48.0	_	0.1
の項	ニッケル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	0.05
目目	モリフ゛テ゛ン	0.023	0.007	0.049	ND	0.009	ND	0.010	ND	ND	ND	ND	0.032	_	0.007
1	アンチモン	ND	ND	0.002	ND	ND	ND	ND	ND	ND	0.001	0.001	ND	_	0.001
	フタル酸シ゛エチルヘキシル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.006
6	主1)単位は、pH(-)、	大眼菌群	数 (MPN/10	0m1) 雷至	気伝道度(r	nS/m) を除	いて mg/	Iである							

(注2)ND:検出せず

(注3)下線は地下水の環境基準を超過しているもの。

(注4)環境省通知に基づき、環境基準を変更した。(平成22年1月調査までの環境基準値は0.02mg/Lである。)

(注5)環境省通知に基づき、シス体及びトランス体を合わせて1つの地下水環境基準項目となったため、名称を変更した。 (平成22年1月調査までは、シス体のみ調査を実施した。)

(注6)環境省通知に基づき、環境基準を変更した。(平成24年11月調査までの環境基準値は0.03mg/Lである。)

(注7)環境省通知に基づき、環境基準を変更した。(平成26年7月調査までの環境基準値は0.03mg/Lである。)

(注8)環境省通知に基づき、名称を変更した。 (平成29年3月調査までは塩化ビニルモノマーである。)

表 2 地下水調査結果 (B 5 地点の推移)

一般項目 加加 企	年月日	H12.12.4	H13, 3, 6	H17. 2. 7	H18, 2, 28	H19, 2, 1	7700 0 40																		
一般項目 加州全	* *			111.2.1	1110. 2. 20	H19. Z. 1	H20. 2. 13	H21.2.17	122.2.16	H23. 2. 9 H	123. 6. 14	H23.8.3 H	123. 11. 22	H24.2.1 H	24. 5. 16	H24.8.1	H24.11.19	H25.2.5	H25. 5. 22 H	125. 7. 29	H25.11.13	H26. 3. 4	H26. 5. 13	環境基準	下限
般項目 加 か 全	H	6.3	6.4	6.6	7. 1	6.8	6.9	6.7	7.0	6.5	6.8	6. 5	6.5	6.6	6.7	6.6	6.7	6.7	6.7	6.6	6.7	6.8	6.6	-	_
大油が全	OD	120	55	50	44	43	41	36	29	21	33	43	24	27	15	34	13	4.2	12	10	8	16	13	-	0.5
加	OD	530	300	370	300	310	220	240	420	300	223	240	210	260	160	204	186	179	194	228	215	120	200	-	0.5
カト 全	腸菌群数	3. 5×10^2	2.4×10^{2}	ND	ND	17	ND	2.0	ND	2.0	ND	23	ND	ND	ND	ND	49	ND	2.0	790	2.0	350	1700	-	_
全	分	2.9	4.1	8.9	5.6	4. 5	5. 5	5.2	4.3	6.1	8.2	5.8	5.4	4.6	4.6	5. 2	4.2	3.4	7.0	10	8.6	11	7.6	-	0.5
	、゛ ミウム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0003	ND	0.0003	ND	ND	ND (0.003 (注6)	0.0003
有鉛	シアン	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1
鉛	機燐	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.1
	}	0.018	0.048	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.007	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.005
六	(価クロム	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.05
砒	:素	0.047	0.022	ND	0.008	<u>0.013</u>	0.012	ND	ND	ND	ND	ND	ND	0.005	0.017	ND	<u>0.011</u>	0.007	ND	ND	0.006	ND	0.006	0.01	0.005
総	水銀	ND	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005	0.0005
71	レキル水銀	ND	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,0005
PC:	CB	ND	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005
シ゛	クロロメタン	0.085	0.039	0.018	0.006	0.003	0.002	0.003	ND	0.004	0.004	ND	0.004	0.005	0.004	0.003	0.003	0.002	0.002	0.002	ND	ND	0.007	0.02	0.002
	塩化炭素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
/rds クロ	ロエチレン ^(注8)	_	_	_	_	_	_	_	_	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
)建 1,	2->* / 1001/97	0.0017	0.0014	ND	ND	ND	ND	0.0006	ND	ND	ND	ND	0.0004	0.0005	ND	ND	ND	0.0006	ND	ND	ND	ND	ND	0.004	0.0004
/38<	1ーシ゛クロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1(注4)	0.002
1,	2-ジクロロエチレン ^(注5)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	0.004
項 1,	1,1-トリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0.0005
_目 1,	1,2-トリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.0006
 -	クロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01(注7)	0.001
テト	·ラクロロエチレン	0.0016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.0005
1,	3-ジクロロプロペン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
チウ	774	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.001
シマ	アジン	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	0.0003
チオ・	トヘ゛ンカルフ゛	ND	-	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.002
^*:	ンセ゛ン	0.22	<u>0. 19</u>	0.042	0.014	0.003	0.002	0.006	0.002	<u>0.025</u>	0.020	0.025	0.020	0.022	<u>0.016</u>	<u>0.015</u>	0.013	0.009	0.010	0.013	0.004	0.010	0.030	0.01	0.001
セレ	<u> </u>	ND	-	<u>0.011</u>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.005
荷笛	酸性窒素及び亜硝酸性窒素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	10
	素	ND	ND	4.2	<u>5.0</u>	<u>3. 6</u>	<u>3.0</u>	<u>2. 0</u>	<u>1.3</u>	ND	2.6	1.5	1.5	1.4	1.3	<u>1.2</u>	<u>1.3</u>	<u>1.2</u>	1.4	1.1	0.9	<u>1.4</u>	1.8	0.8	0.8
ホウ	素	2.1	<u>2.6</u>	3.0	<u>3. 1</u>	<u>3. 1</u>	2.6	<u>3. 0</u>	<u>2. 5</u>	<u>2.5</u>	<u>2.6</u>	<u>2. 6</u>	<u>4. 9</u>	2.8	<u>2. 6</u>	<u>2. 7</u>	<u>2. 6</u>	<u>2. 5</u>	2.2	<u>2.6</u>	2.7	<u>2.5</u>	2.0	1	0.1
1,	4-シ [*] オキサン	_	_		_			_	_	<u>5.3</u>	<u>5.1</u>	<u>5. 6</u>	<u>5. 1</u>	<u>5. 2</u>	<u>3. 5</u>	<u>4.5</u>	4.1	<u>3.5</u>	<u>3.5</u>	4.1	3.1	<u>3.3</u>	3.6	0.05	0.005
全	室素	14	14	12	10	37	30	31	45	8	9	38	34	28	34	24	17	17	15	18	4	ND	12	_	1
7	: 燐	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	0.1
(V)	化物イオン	2, 300	1,840	2,000	1,520	1, 550	1, 330	1,470	1,400	1,400	1,400	1, 480	1, 390	1, 330	1, 180	1, 120	1, 080	944	943	1,020	690	704	901	-	1
I'	[気伝導率	635	462	694	542	478	314	274	280	560	502	517	523	502	432	467	399	413	400	354	339	320	403	-	0.1
TE	ナル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	ND	ND	ND	ND	ND	ND	-	0.05
	lフ゛ァ゛ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.018	0.009	ND	-	0.007
	/ チモン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0.001	ND	ND	ND	ND		ND	ND	ND	ND	-	0.001
	ル酸ジエチルヘキシル 1)単位は、pH(-).	ND 大腸菌群数	0.020	ND	ND	ND	ND	0.010	0.010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.006

(注1)単位は、pH(-)、大腸菌群数(MPN/100m1)、電気伝導率(mS/m)を除いて、mg/Lである。

(注2)ND:検出せず

- (注3)下線は地下水の環境基準を超過しているもの。
- (注4)環境省通知に基づき、環境基準を変更した。 (平成22年1月調査までの環境基準値は0.02mg/Lである。)
- (注5)環境省通知に基づき、シス体及びトランス体を合わせて1つの地下水環境基準項目となったため、名称を変更した。 (平成22年1月調査までは、シス体のみ調査を実施した。)
- (注6)環境省通知に基づき、環境基準を変更した。(平成24年1月調査までの環境基準値は0.01mg/Lである。)
- (注7)環境省通知に基づき、環境基準を変更した。(平成26年7月調査までの環境基準値は0.03mg/Lである。)
- (注8)環境省通知に基づき、名称を変更した。(平成29年3月調査までは塩化ビニルモノマーである。)

表 2 地下水調査結果 (B 5 地点の推移)

調者	E 地点				- 1		В 5	. (D 0)E.					地下水の	検出
-	汽 年月日	H26. 7. 29	H26. 11. 25	H27. 2. 16	H27. 5. 19	H27. 7. 27		H28, 5, 24	H28. 7. 26	H28.11.8	H29. 1. 31	H29. 5. 23	環境基準	下限
	рН	6.7	6.6	6. 9	6.4	6.6	6.8	6.8	6.9	6.8	7.0	6.6	-	-
-	ВОО	3. 2	6.2	17	12	23	24	20	14	8.9	22	16	-	0.5
般項	COD	100	130	100	110	58	65	67	69	74	92	77	-	0.5
目目	大腸菌群数	33	49	59	170	ND	ND	ND	4.0	11	ND	ND	-	-
	油分	6.2	8.9	4.7	5.9	3. 1	4.0	5. 7	4.4	4.9	5.8	3.8	-	0.5
	カト゛ミウム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003 (注6)	0.0003
	全シアン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1
	有機燐	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.1
	鉛	ND	0.006	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.005
	六価クロム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.05
	砒素	ND	ND	ND	0.009	ND	ND	0.007	0.006	0.006	ND	0.008	0.01	0.005
	総水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005	0.0005
	アルキル水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005
	PCB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005
	シ゛クロロメタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.002
	四塩化炭素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
/rds	クロロエチレン ^(注8)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
健	1, 2-ジクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.0004
康	1, 1-シ、クロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1 ^(注4)	0.002
-	1, 2-ジクロロエチレン ^(注5)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	0.004
項	1, 1, 1ートリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0.0005
目	1, 1, 2-トリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.0006
	トリクロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01(注7)	0.001
	テトラクロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0,0005
	1, 3-ジクロロプロペン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
	チウラム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.001
	シマシ゛ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	0.0003
	チオヘ゛ンカルフ゛	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.002
	ヘ゛ンセ゛ン	0.014	0.018	0.007	0.014	0.006	0.007	0.008	0.008	0.008	0.005	0.006	0.01	0.001
	セレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.005
	硝酸性窒素及び亜硝酸性窒素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	10
	7ッ素	0.8	0.8	ND	ND	ND	ND	ND	ND	ND	ND	<u>0. 9</u>	0.8	0.8
	おり素	<u>2.3</u>	<u>2.0</u>	<u>2. 0</u>	<u>1.9</u>	1.2	<u>1.5</u>	<u>1.7</u>	<u>1.6</u>	<u>1.7</u>	1.8	<u>1.7</u>	1	0.1
	1,4-シ゛オキサン	<u>2.3</u>	<u>2.3</u>	<u>1.6</u>	<u>2.4</u>	0.85	<u>1.0</u>	<u>1.2</u>	<u>1.5</u>	<u>1.4</u>	<u>1. 1</u>	<u>1.3</u>	0.05	0.005
	全窒素	3	8	3	3	5	4	3	4	4	3	4	-	1
そ	全燐	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.1
D	塩化物イオン	603	967	585	773	330	390	447	430	425	457	460	-	1
他	電気伝導率	272	336	249	264	195	197	194	183	210	203	190	-	0.1
の項	ニッケル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.05
月日	モリフ゛テ゛ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.007
	アンチモン	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND	ND	-	0.001
$ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{L}}}}$	フタル酸ジェチルヘキシル E1)単位は、pH(-)、	ND	ND	ND	ND i.伝導率(m	ND	ND	ND Lである。	ND	ND	ND	ND	-	0.006

(注1)単位は、pH(-)、大腸菌群数(MPN/100ml)、電気伝導率(mS/m)を除いて、mg/Lである。

(注2)ND:検出せず

(注3)下線は地下水の環境基準を超過しているもの。

(注4)環境省通知に基づき、環境基準を変更した。(平成22年1月調査までの環境基準値は0.02mg/Lである。)

(注5)環境省通知に基づき、シス体及びトランス体を合わせて1つの地下水環境基準項目となったため、名称を変更した。 (平成22年1月調査までは、シス体のみ調査を実施した。)

(注6)環境省通知に基づき、環境基準を変更した。(平成24年1月調査までの環境基準値は0.01mg/Lである。)

(注7)環境省通知に基づき、環境基準を変更した。(平成26年7月調査までの環境基準値は0.03mg/Lである。)

(注8)環境省通知に基づき、名称を変更した。(平成29年3月調査までは塩化ビニルモノマーである。)

表3 地下水調査結果 (F1西地点の推移)

調	查地点											F 1 🗷	i											地下水の	検出
調	查年月日	H15.2.6	H16.2.5	H17. 2. 7 H	118. 2. 28	Н19.2.1 Н	20. 2. 13 H	H21. 2. 17 H2	22. 2. 16	H23.2.9	H23. 6. 14 I	Н23.8.3 Н	23. 11. 22	H24. 2. 1	H24. 5. 16	H24.8.1	24. 11. 19	H25.2.5	Н25. 5. 22 Н	25. 7. 22	H25. 11. 13	H26. 2. 17	H26, 5, 13	環境基準	下限
	рН	7.0	7.0	7.0	6.9	7. 3	6. 9	7.2	7.7	6.8	6.9	6.9	7.2	6.9	6.8	6.8	7. 1	7. 1	6.7	6.7	7. 1	6.9	7. 1	_	-
- Au	BOD	3. 9	6.6	1.0	2.7	0.5	1.6	1.7	1. 1	0.9	ND	ND	0.7	0.6	ND	ND	ND	2.1	1.7	0.5	0.6	ND	ND	-	0.5
段項	COD	5. 4	7.9	1.7	2.4	2.4	2.7	2.3	0.9	1.8	2.8	1.9	1.9	1.9	2.0	3.0	2.2	0.9	7.8	6.1	1.7	5.0	2.6	_	0.5
目	大腸菌群数	22	4.5	2.0	22	33	3. 7	7.8	2.0	ND	13	22	540	7.8	11	11	70	ND	69	33	ND	7.8	ND	_	-
	油分	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	-	0.5
	カト゛ミウム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0004	0.003 (注6)	0.0003
	全シアン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1
	有機燐	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.1
	鉛	0.024	ND	0.007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.005
	六価クロム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.05
	砒素	0.016	0.016	ND	0.013	ND	0.010	ND	0.008	ND	ND	ND	ND	ND	0.007	0.012	0.008	ND	ND	0.008	ND	0.016	0.009	0.01	0.005
	総水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005	0.0005
	アルキル水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005
	PCB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005
	シ゛クロロメタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.002
	四塩化炭素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
fe to	クロロエチレン ^(注8)	_		_	_	_	_	_	_	_	ND	ND	ND	ND	ND	0.0013	ND	ND	ND	ND	ND	ND	0.0006	0.002	0.0002
健	1, 2-シ゛クロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.0004
康	1, 1-シ クロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1 (注4)	0.002
	1,2-ジクロロエチレン (注5)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	0.004
項	1, 1, 1-トリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0.0005
I	1, 1, 2-トリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.0006
1	トリクロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.007	ND	ND	ND	ND	ND	ND	0.011	0.01(注7)	0.001
	テトラクロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.0005
	1, 3-ジクロロプロペン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.0002
	チウラム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.001
	シマシ゛ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	0.0003
	チオヘ゛ンカルフ゛	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.002
	^ ´ンセ ゙ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.010	ND	ND	ND	0.001	ND	0.010	0.012	0.01	0.001
	セレン	ND	ND	0.010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.005
	硝酸性窒素及び亜硝酸性窒素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	10
	フッ素	ND	ND	ND	<u>0. 9</u>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8	0.8
	おり素	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.5	0.5	0.9	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.5	0.3	0.4	1	0.1
	1, 4ーシ゛オキサン	_		_	_	_	_	_	_	ND	0.008	ND	ND	0.006	ND	0.010	0.010	0.010	0.020	0.023	ND	0.017	0.027	0.05	0.005
	全窒素	1	4	ND	ND	1	ND	ND	ND	ND	ND	1.6	1.2	1.2	4	ND	ND	ND	ND	ND	ND	ND	ND	-	1
2	全燐	ND	ND	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	0.1
ての	塩化物イオン	230	230	220	216	223	274	241	250	270	360	248	252	285	331	342	328	338	436	426	280	314	309		1
他	電気伝導率	98. 6	94	94.6	90	83. 7	53. 4	47.3	49	110	136	102	109	115	130	133	118	133	168	176	100	127	117	-	0.1
0	ニッケル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.05
月日	モリフ゛テ゛ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.007
ľ	アンチモン	ND	0.001	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	0.001
L	フタル酸ジエチルヘキシル	ND	ND	0.033	0.030	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.006
- (注1)単位は、pH(-)、	十.阻,盐,联;	*6 (MDN / 100m	1) 重气/	□ 道 ∞ (c	:/m) た[企し	7 mg/I	である。																	

(注1)単位は、pH(-)、大腸菌群数(MPN/100m1)、電気伝導率(mS/m)を除いて、mg/Lである。

(注2)ND:検出せず

⁽注3)下線は地下水の環境基準を超過しているもの。

⁽注4)環境省通知に基づき、環境基準を変更した。(平成22年1月調査までの環境基準値は0.02mg/Lである。)

⁽注5)環境省通知に基づき、シス体及びトランス体を合わせて1つの地下水環境基準項目となったため、名称を変更した。(平成22年1月調査までは、シス体のみ調査を実施した。)

⁽注6)環境省通知に基づき、環境基準を変更した。(平成24年1月調査までの環境基準値は0.01mg/Lである。)

⁽注7)環境省通知に基づき、環境基準を変更した。(平成26年7月調査までの環境基準値は0.03mg/Lである。)

⁽注8)環境省通知に基づき、名称を変更した。(平成29年3月調査までは塩化ビニルモノマーである。)

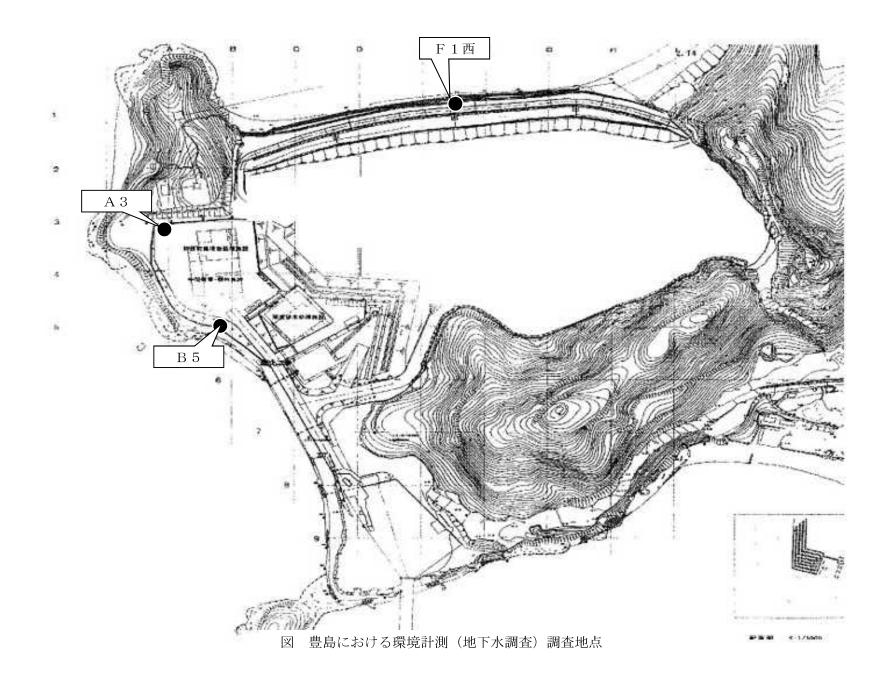
表3 地下水調査結果 (F1西地点の推移)

回数性性	調査							F 1	西						地下水の	検出
BO D D	調了	全年月日	H26. 7. 22	H26. 11. 25	H27. 2. 16	H27. 5. 19	H27.7.27	H27.11.24	H28. 2. 9	H28. 5. 24	H28. 7. 26	H28. 11. 8	H29. 1. 31	H29. 5. 23		下限
Re		рН	6. 7						6.8	6.7	6.6	6.7	6.9	6.7	-	-
大照 大照 大照 大照 大照 大照 大照 大照	<u> </u>	ВОО	ND	0.6	1.3	ND	0.7	ND	1. 3	0.8	0.8	1.4	1.8	4.9	_	0. 5
1 大統領経験		COD	8.0	10	5.8	6.9	6.4	7.2	6.5	7.4	6.3	7.4	7.7	8.8	-	0.
## 1 (9 A		大腸菌群数	ND	7.8	ND	ND	2.0	7.8	2.0	13	79	ND	ND	ND	-	
日本語	_	油分	ND	0.5	ND	ND	ND	1.2	ND	0.7	ND	0.9	ND	1. 5	-	0.
日本語		カト゛ミウム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003 (注6)	0.000
会会			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.
 六価キム ND <		有機燐	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	0.
 脱素 0.019 0.011 0.010 0.020 0.024 0.030 0.035 0.038 0.030 0.033 0.045 0.048 0.01 0.06 0.07 0.08 0.030 0.030 0.030 0.033 0.045 0.048 0.01 0.06 0.08 0.000 0.000<td></td><td>鉛</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.012</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>0.00</td>		鉛	ND	ND	ND	ND	ND	ND	ND	0.012	ND	ND	ND	ND	0.01	0.00
総水銀 ND		六価クロム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.0
Policy		砒素	0.019	0.011	0.011	0.020	0.024	0.030	0.039	0.038	0.030	0.033	0.045	0.048	0.01	0.00
PCB		総水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0005	0.000
プラカロメラン ND ND ND ND ND ND ND N		アルキル水銀	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000
四塩化炭素 ND ND ND ND ND ND ND N		PCB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000
Pau コチレン (注意)		シ゛クロロメタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.00
Re 1、2〜√ 7 m m m m m m m m m m m m m m m m m m		四塩化炭素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.000
Re 1、2〜√ 7 m m m m m m m m m m m m m m m m m m	١	クロロエチレン ^(注8)	0.0003	ND	ND	0.0005	ND	ND	0.0006	ND	ND	ND	0.0002	0.0002	0.002	0.000
日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	健		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.000
日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	康	1, 1-シ゛クロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1(注4)	0.00
項	1245	1,2-シ゛クロロエチレン ^(注5)	0.006	ND	0.011	0.019	ND	ND	0.012	ND	ND	ND	ND	ND		0.00
Fig.	項		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0.000
サクロロエチレン 0,033 0,006 0,031 0,021 0,002 ND 0,009 ND 0,003 ND 0,003 0,001 0,01 (注) 0,0 FF7ロロエチレン ND ND ND ND ND ND ND N	L	1, 1, 2-トリクロロエタン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.000
デトラクロロエチレン ND	Ι"	トリクロロエチレン	0.033	0.006	0.031	0.021	0.002	ND	0.009	ND	0.003	ND	0.003	0.001	0.01(注7)	0.00
プラブム ND ND <th< td=""><td></td><td>テトラクロロエチレン</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>0.000</td></th<>		テトラクロロエチレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.000
プラジ・ソ ND ND <t< td=""><td></td><td>1, 3-ジクロロプロペン</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.002</td><td>0.000</td></t<>		1, 3-ジクロロプロペン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.000
方が、カカブ ND ND ND ND ND ND ND N		チウラム	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.00
ペンダギン 0.007 0.006 0.012 0.015 0.001 0.001 0.012 ND ND ND ND ND ND ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0		シマシ゛ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	0.000
セレン ND ND <th< td=""><td></td><td>チオヘ゛ンカルフ゛</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.02</td><td>0.00</td></th<>		チオヘ゛ンカルフ゛	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.00
爾維性窒素及び車前酸性窒素 ND		ベンゼン	0.007	0.006	0.012	0.015	0.001	0.001	0.012	ND	ND	ND	ND	ND	0.01	0.00
ファ素 ND		セレン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.00
が素 0.5 0.3 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 1 (1.4-)** 対対シ 0.045 0.025 0.026 0.039 0.027 0.025 0.019 0.029 0.026 0.033 0.028 0.034 0.05 0.0		硝酸性窒素及び亜硝酸性窒素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	1
1,4-y' 注け		7ッ素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8	0.
全窒素 ND		おり素	0. 5	0. 3	0. 5	0.4	0.4	0.4	0. 4	0.4	0.4	0.4	0.4	0. 5	1	0.
全牌 ND N	L	1, 4-ジオキサン	0.045	0.025	0.026	0.039	0.027	0.025	0.019	0.029	0.026	0.033	0.028	0.034	0.05	0.00
で 他 電気伝導率 456 522 545 554 539 496 555 498 588 584 660 - 00 日 日 日 日 日 177 174 193 197 204 202 191 205 181 220 208 200 - 0 191 197 193 197 204 202 191 205 181 220 208 200 - 0 191 </td <td></td> <td>全窒素</td> <td>ND</td> <td>-</td> <td></td>		全窒素	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	
成化物イオン 539 456 522 545 554 539 496 555 498 588 584 660 - 他 電気伝導率 207 174 193 197 204 202 191 205 181 220 208 200 - (ローナッケル ND ND <t< td=""><td>2.</td><td>全燐</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>-</td><td>0.</td></t<>	2.	全燐	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.
他 電気伝導率 207 174 193 197 204 202 191 205 181 220 208 200 $-$ 00 $-$ 00 $-$ 2 $\sqrt{2}$		塩化物イオン	539	456	522	545	554	539	496	555	498	588	584	660	_	
$ \frac{q}{4} = \frac{1}{2} \frac{1}{7^{2}} \frac{7^{2}}{7^{2}} \frac{ND}{ND} \frac{ND} \frac{ND}{ND} \frac{ND}{ND} \frac{ND}{ND} \frac{ND}{ND} \frac{ND}{ND} \frac{ND}{ND} \frac$		電気伝導率	207	174	193	197	204	202	191	205	181	220	208	200	-	0.
E		ニッケル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.0
TVFEV ND		モリフ゛テ゛ン	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	0.00
フタル酸ジエチルヘキシル ND	-	アンチモン	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	ND	-	0.00
	L	フタル酸ジエチルヘキシル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_	0.000

(注1)単位は、pH(-)、大腸菌群数(MPN/100m1)、電気伝導率(mS/m)を除いて、mg/Lである。

(注2)ND:検出せず

(注3)下線は地下水の環境基準を超過しているもの。


(注4)環境省通知に基づき、環境基準を変更した。(平成22年1月調査までの環境基準値は0.02mg/Lである。)

(注5)環境省通知に基づき、シス体及びトランス体を合わせて1つの地下水環境基準項目となったため、名称を変更した。(平成22年1月調査までは、シス体のみ調査を実施した。)

(注6)環境省通知に基づき、環境基準を変更した。(平成24年1月調査までの環境基準値は0.01mg/Lである。)

(注7)環境省通知に基づき、環境基準を変更した。 (平成26年7月調査までの環境基準値は0.03mg/Lである。)

(注8)環境省通知に基づき、名称を変更した。(平成29年3月調査までは塩化ビニルモノマーである。)

豊島における環境計測(地下水調査)結果について

地下水の環境計測は、工事の進捗に伴う水質の推移を把握することを目的としている。今回、平成29年4月及び6月に実施した水質調査結果をとりまとめた。

1 調査の概要

(1)調査日

平成 29 年 4 月 10 日 (月)、11 日(火) 平成 29 年 6 月 12 日 (月)、13 日(火)

(2) 調査地点(調査地点図参照)

観測井 6 地点

- ·(B+40, 2+10) 付近 2 地点(浅井戸、深井戸)
- ·(C, 2+40) 付近 3 地点(浅井戸、中間井戸、深井戸)
- · (C, 3+10) 付近

揚水井 4 地点

- · (B+40, 2+10) 付近 2 地点 (浅井戸、深井戸)
- ·(C, 2+40) 付近 2 地点(浅井戸 深井戸)
- · (C, 3+10) 付近
- (3) 検体採取機関及び分析機関

採取機関:廃棄物対策課、直島環境センター

分析機関:環境保健研究センター

- 2 調査結果の概要(表1~11)
- (1) 各観測井において、次の項目が環境基準値を満足しなかった期間がある。

(B+40, 2+10) 浅井戸:

クロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、ベンゼン、1,4-ジオキサン (8+40,2+10) 深井戸:

クロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、ベンゼン、1,4-ジオキサン (C,2+40) 浅井戸:

ベンゼン、1,4-ジオキサン

(C, 2+40) 中間井戸:

クロロエチレン、1,2-ジクロロエチレン、ベンゼン、1,4-ジオキサン

(C, 2+40) 深井戸:

クロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、ベンゼン、1,4-ジオキサン (C,3+10):

1,4-ジオキサン

(2) (C, 3+10)を除く、各揚水井において、次の項目が環境基準を満足しなかった。(C, 3+10)揚水井は環境基準を満足した。

(B+40, 2+10) 浅井戸:

クロロエチレン、ベンゼン、1,4-ジオキサン

(B+40, 2+10) 深井戸:

クロロエチレン、1, 2-ジクロロエチレン、トリクロロエチレン、ベンゼン、1, 4-ジオキサン (C, 2+40 浅井戸)

クロロエチレン、トリクロロエチレン、ベンゼン、1,4-ジオキサン

(C, 2+40) 深井戸:

クロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、ベンゼン、1,4-ジオキサン

表1 地下水調査結果 (B+40,2+10)付近浅井戸 (観測井) の推移

調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)	水位	
H26. 4. 10	<u>0.0077</u>	<u>0.056</u>	<u>0.080</u>	<u>0.73</u>	<u>1.6</u>	-	-	
H26. 6. 17	<u>0.022</u>	<u>0. 28</u>	<u>1. 1</u>	<u>0.79</u>	<u>2. 9</u>	17	0.83	
H26.8.25	<u>0.0046</u>	0.012	0.018	<u>0.75</u>	<u>1.4</u>	17	1.54	
H26.10.22	<u>0. 0028</u>	0.017	0.030	<u>0.32</u>	<u>0.34</u>	5. 7	1.24	
H26.12.10	<u>0.0024</u>	0.008	<u>0.021</u>	<u>0.22</u>	<u>0.54</u>	5. 6	0.87	
H27. 2. 18	0.0014	0.006	<u>0.029</u>	<u>0.28</u>	<u>0.58</u>	4.0	0.61	
H27.4.22	0.0015	0.008	<u>0.011</u>	<u>0. 28</u>	<u>0. 78</u>	3. 9	0.96	
H27. 6. 17	<u>0.15</u>	<u>0.34</u>	<u>0.025</u>	<u>0.33</u>	<u>0.38</u>	5. 9	0.67	
H27.8.27	<u>0. 027</u>	<u>0. 10</u>	<u>0. 097</u>	<u>0.27</u>	<u>0.35</u>	12	1.04	
H27.10.7	<u>0. 020</u>	<u>0.042</u>	<u>0.021</u>	<u>0.17</u>	<u>0.20</u>	8. 5	0.85	
H27.12.11	<u>0.030</u>	<u>0.043</u>	0.002	<u>0.16</u>	<u>0.18</u>	9.8	0.81	
H28.2.3	<u>0.014</u>	<u>0. 13</u>	<u>0.048</u>	<u>0.15</u>	<u>0. 19</u>	6.4	0.79	
H28. 4. 7	<u>0.0022</u>	ND	ND	<u>0.15</u>	<u>0. 22</u>	11	0.67	
H28. 6. 10	0.0010	0.004	<u>0.013</u>	<u>0. 084</u>	<u>0.31</u>	5. 0	0.70	
H28.8.4	<u>0.017</u>	0.038	ND	<u>0. 077</u>	<u>0. 15</u>	3. 1	1.12	
H28.10.11	0.0012	0.018	<u>0.015</u>	<u>0. 077</u>	<u>0. 15</u>	3. 5	1.03	
H28. 12. 15	0.0016	ND	0.008	<u>0. 081</u>	<u>0.16</u>	3. 6	0.82	
H29. 2. 6	<u>0.0073</u>	0.027	<u>0.024</u>	<u>0.10</u>	<u>0.16</u>	5. 0	0.56	
H29. 4. 10	<u>0. 0025</u>	0.006	ND	<u>0. 077</u>	<u>0. 13</u>	4.3	0.71	
H29. 6. 12	<u>0.044</u>	<u>0. 25</u>	<u>0.014</u>	<u>0.13</u>	<u>0.20</u>	6.6	0.49	
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-	-	
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5	-	

⁽注1)単位は、水位はm、その他についてはmg/Lである。

⁽注2)ND:定量下限值未満

⁽注3)下線は地下水の環境基準を超過しているもの。

⁽注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

⁽注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。)

表 2 地下水調査結果 (B+40, 2+10)付近深井戸 (観測井) の推移

		人口 /山 / / / / / /	1/10 / D 10, D		(B(D)1)1/ 4/1E/E		
調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)	水位
H26. 4. 10	<u>0.016</u>	<u>3. 0</u>	<u>3. 4</u>	<u>1.3</u>	<u>4. 1</u>	ı	1
H26. 6. 17	<u>5.8</u>	<u>2. 6</u>	<u>4. 1</u>	<u>1.3</u>	<u>7. 2</u>	5. 3	0.86
H26.8.25	<u>0.70</u>	<u>2. 7</u>	<u>2. 6</u>	<u>1.3</u>	<u>4. 3</u>	5. 4	1.51
H26. 10. 22	<u>0.63</u>	<u>3. 3</u>	<u>3. 9</u>	<u>1.7</u>	<u>3. 4</u>	6. 4	1.02
H26. 12. 10	<u>0.81</u>	<u>3. 1</u>	<u>3. 6</u>	<u>1.7</u>	<u>3. 8</u>	7. 4	0.87
Н27. 2. 18	<u>0.47</u>	<u>2. 1</u>	<u>1.8</u>	<u>1.0</u>	<u>3. 4</u>	5. 5	0.61
H27. 4. 22	<u>0. 29</u>	<u>1. 6</u>	<u>1.8</u>	<u>1.9</u>	<u>4. 0</u>	4. 4	0.87
H27.6.17	<u>0.064</u>	<u>0. 25</u>	<u>0. 20</u>	<u>1.7</u>	<u>2. 4</u>	4. 5	-0.30
H27.8.27	<u>0. 20</u>	<u>1. 1</u>	<u>1.4</u>	<u>1. 9</u>	<u>2. 3</u>	5. 9	1.06
H27.10.7	<u>0. 13</u>	<u>0.45</u>	<u>0. 67</u>	<u>1. 9</u>	<u>2. 3</u>	5. 9	1.02
H27.12.11	<u>0. 15</u>	<u>0.64</u>	0.89	<u>2.3</u>	<u>1. 7</u>	5. 2	- 0.10
H28. 2. 4	<u>0.095</u>	<u>0.52</u>	<u>0.50</u>	<u>1. 9</u>	<u>1. 7</u>	4. 5	0.78
H28.4.7	<u>0. 29</u>	<u>0.82</u>	<u>1. 0</u>	<u>2.5</u>	<u>1. 9</u>	5. 4	0.68
H28.6.14	<u>0. 23</u>	<u>1. 6</u>	<u>2. 1</u>	<u>2. 1</u>	<u>2. 3</u>	4. 9	0.74
H28.8.4	<u>0.31</u>	<u>1. 9</u>	<u>1. 8</u>	<u>2.5</u>	<u>2. 1</u>	4.8	1.13
H28.10.11	<u>0.091</u>	<u>0.066</u>	<u>0.067</u>	<u>3. 2</u>	<u>1.5</u>	4.8	1.02
H28. 12. 15	<u>0.42</u>	<u>1. 2</u>	<u>1. 4</u>	<u>1.6</u>	<u>2. 3</u>	6. 0	0.68
H29. 2. 6	<u>0.40</u>	<u>1. 4</u>	<u>1. 7</u>	<u>1.7</u>	<u>1. 7</u>	5. 1	0.53
H29. 4. 10	<u>0.080</u>	<u>0.30</u>	<u>0.48</u>	<u>1.9</u>	<u>1.3</u>	3. 1	0.65
H29.6.12	<u>0.41</u>	<u>1. 9</u>	<u>2. 7</u>	<u>2. 1</u>	<u>1.8</u>	3. 7	0.65
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-	İ
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5	1

⁽注1)単位は、水位はm、その他についてはmg/Lである。

⁽注2)ND:定量下限值未満

⁽注3)下線は地下水の環境基準を超過しているもの。

⁽注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

⁽注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。)

表3 地下水調査結果 (C, 2+40)付近浅井戸 (観測井) の推移

	衣 3 电下小调电相术(C, 2 * 40/1) L 该开户(鲍伊开) V 1 1 1 1 2 1							
調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)	水位	
H26. 4. 10	<u>0. 26</u>	<u>0.042</u>	0.028	<u>0.61</u>	<u>5. 2</u>	-	-	
H26. 6. 17	<u>0.023</u>	0.037	<u>0.040</u>	<u>0.82</u>	<u>0. 94</u>	22	0.83	
H26.8.25	<u>0.025</u>	<u>0.063</u>	<u>0. 16</u>	<u>0.49</u>	<u>0.42</u>	6. 7	1.54	
H26. 10. 22	<u>0.0033</u>	0.019	0.023	<u>0.47</u>	<u>0. 27</u>	5.0	1. 24	
H26. 12. 10	<u>0.0037</u>	0.016	<u>0.042</u>	<u>0.15</u>	<u>0.12</u>	4.9	0.87	
H27. 2. 18	<u>0.0034</u>	0.012	<u>0.041</u>	<u>0. 23</u>	<u>0. 26</u>	4.0	0.61	
H27. 4. 21	<u>0. 0033</u>	0.005	<u>0.015</u>	<u>0. 14</u>	<u>0. 21</u>	3. 1	0.99	
H27. 6. 18	0.0012	0.007	0.008	<u>0. 15</u>	<u>0. 18</u>	4.6	0.83	
H27.8.26	0.0003	ND	0.005	<u>0. 071</u>	<u>0. 17</u>	4.8	1. 15	
H27.10.6	0.0003	ND	0.006	<u>0.063</u>	<u>0.14</u>	4.6	1.07	
H27. 12. 10	0.0006	ND	0.008	<u>0. 029</u>	<u>0. 12</u>	4.9	0.93	
H28. 2. 3	0.0004	0.004	<u>0.012</u>	<u>0. 031</u>	<u>0. 12</u>	4.8	0.85	
H28. 4. 6	0.0002	ND	0.004	<u>0. 033</u>	<u>0. 16</u>	4. 4	0.74	
H28. 6. 10	ND	ND	ND	<u>0.038</u>	<u>0.10</u>	3. 7	0.93	
H28. 8. 3	0.0013	ND	ND	<u>0.038</u>	<u>0. 15</u>	4.0	1. 18	
H28. 10. 11	0.0004	ND	ND	<u>0.014</u>	<u>0. 097</u>	1.8	0.97	
H28. 12. 14	<u>0.011</u>	0.033	0.006	<u>0.038</u>	<u>0. 15</u>	2.6	0.76	
H29. 2. 6	<u>0. 0025</u>	ND	0.001	<u>0.048</u>	<u>0.10</u>	2.7	0.64	
H29. 4. 10	0.0010	ND	0.002	<u>0.043</u>	<u>0.10</u>	2.6	0.70	
H29. 6. 12	0.0016	ND	ND	<u>0.081</u>	<u>0.14</u>	3. 2	0.70	
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-	-	
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5	-	

⁽注1)単位は、水位はm、その他についてはmg/Lである。

⁽注2)ND:定量下限值未満

⁽注3)下線は地下水の環境基準を超過しているもの。

⁽注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

⁽注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。)

表 4 地下水調査結果 (C, 2+40)付近中間井戸 (観測井) の推移

		双王 地下小脚。	五/相// (()) 	13 2 1 153717	(再先行)7下/ ▽21圧/3		
調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)	水位
H26. 4. 10	<u>0.45</u>	<u>0.13</u>	0.030	<u>3.8</u>	<u>4.8</u>	-	ı
H26. 6. 17	<u>0.011</u>	<u>0.090</u>	<u>0.46</u>	<u>8.5</u>	<u>11</u>	19	0.91
H26.8.25	<u>0.31</u>	<u>0.49</u>	<u>0. 14</u>	<u>4. 7</u>	<u>4. 0</u>	17	1.58
H26. 10. 22	<u>0.020</u>	<u>0.045</u>	<u>0.034</u>	<u>4. 9</u>	<u>3. 8</u>	16	1.35
H26. 12. 10	<u>0. 0051</u>	0.026	<u>0.051</u>	<u>4. 2</u>	<u>3. 7</u>	19	0.95
H27. 2. 18	<u>0. 0033</u>	0.018	<u>0.047</u>	<u>2. 1</u>	<u>2. 2</u>	5. 3	0.74
H27. 4. 21	<u>0.0021</u>	0.009	<u>0.017</u>	<u>0.41</u>	<u>1.8</u>	1.9	0.97
H27. 6. 18	0.0012	0.004	0.006	<u>0.77</u>	<u>1. 7</u>	4. 3	0.82
H27. 8. 26	<u>0. 0052</u>	0.009	0.003	<u>0. 095</u>	<u>1. 5</u>	5. 3	1.13
Н27. 10. 6	0.0007	ND	0.005	<u>0.051</u>	<u>0.68</u>	5. 0	1.07
H27. 12. 10	0.0019	ND	0.004	<u>0.062</u>	<u>0.62</u>	5. 5	0.92
H28. 2. 3	<u>0.0062</u>	0.005	0.009	<u>0.047</u>	<u>0.47</u>	5. 1	0.83
H28.4.6	<u>0.014</u>	ND	ND	<u>0.084</u>	<u>0.56</u>	5. 2	0.72
H28. 6. 10	0. 0015	ND	ND	<u>0.083</u>	<u>1. 1</u>	2. 9	0.96
H28.8.3	<u>0.033</u>	<u>0.082</u>	<u>0.015</u>	<u>0.066</u>	<u>0.41</u>	3.8	1.15
H28. 10. 11	<u>0.050</u>	<u>0. 073</u>	0.007	<u>0.26</u>	<u>0.68</u>	3. 9	0.97
H28. 12. 14	<u>1.7</u>	<u>6.5</u>	<u>3. 1</u>	<u>0.58</u>	<u>1. 6</u>	5. 3	0.72
H29.2.6	<u>0.41</u>	<u>2.3</u>	<u>0.043</u>	<u>0.32</u>	<u>0. 99</u>	4.7	0.63
H29. 4. 10	<u>0.067</u>	<u>0. 17</u>	0.006	<u>0.18</u>	<u>0.42</u>	1.6	0.67
H29. 6. 12	<u>0.030</u>	<u>0.042</u>	ND	<u>0.26</u>	<u>0. 96</u>	4.7	0.68
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-	-
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5	-

⁽注1)単位は、水位はm、その他についてはmg/Lである。

⁽注2)ND:定量下限值未満

⁽注3)下線は地下水の環境基準を超過しているもの。

⁽注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

⁽注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。)

表 5 地下水調査結果 (C, 2+40)付近深井戸 (観測井) の推移

衣 3 电下小调重福未(C, 2 * 40/ F) 互体开户(観測开)の推榜							
調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)	水位
H26.4.10	<u>0.0037</u>	<u>2. 0</u>	<u>3, 1</u>	<u>3. 3</u>	<u>5. 4</u>	-	1
H26. 6. 17	<u>2. 0</u>	<u>20</u>	<u>30</u>	<u>4.6</u>	<u>7. 0</u>	19	0.91
H26. 8. 25	<u>0.52</u>	<u>5. 8</u>	<u>4.9</u>	<u>4. 2</u>	<u>4. 1</u>	17	1.58
H26. 10. 22	<u>0.31</u>	<u>3. 0</u>	<u>3. 0</u>	<u>4. 1</u>	<u>3. 5</u>	16	1.38
H26. 12. 10	<u>1. 9</u>	<u>15</u>	<u>16</u>	<u>3. 6</u>	<u>4. 7</u>	17	0.96
H27.2.18	<u>3. 6</u>	<u>21</u>	<u>11</u>	<u>4.0</u>	<u>3. 0</u>	6. 7	0.66
H27.4.22	<u>1.2</u>	<u>10</u>	<u>2. 5</u>	<u>1.6</u>	<u>2.5</u>	4. 1	0.81
Н27. 6. 18	<u>1.4</u>	<u>11</u>	<u>2.8</u>	<u>1. 9</u>	<u>2.0</u>	8. 2	0.71
H27.8.26	<u>1. 2</u>	<u>12</u>	<u>7. 2</u>	<u>1. 2</u>	<u>1.6</u>	7. 3	1.11
H27.10.6	<u>1.0</u>	<u>7. 3</u>	<u>2. 0</u>	<u>0.88</u>	<u>1. 1</u>	5. 6	0.82
H27. 12. 11	<u>1. 2</u>	<u>7. 1</u>	<u>1. 9</u>	<u>0. 95</u>	<u>0.96</u>	6. 3	0.80
H28.2.3	<u>1. 2</u>	<u>8. 9</u>	<u>1. 3</u>	<u>0.84</u>	<u>0.84</u>	5. 3	0.83
H28.4.7	<u>2. 9</u>	<u>16</u>	<u>5. 1</u>	<u>1. 4</u>	<u>1.1</u>	6. 5	0.78
H28. 6. 14	<u>2. 9</u>	<u>27</u>	<u>15</u>	<u>2. 0</u>	<u>2.0</u>	6. 3	1.04
H28.8.3	<u>1.6</u>	<u>13</u>	<u>13</u>	<u>1. 0</u>	<u>1.4</u>	3.8	1.14
H28.10.11	<u>2.7</u>	<u>22</u>	<u>8. 9</u>	<u>2. 0</u>	<u>1.4</u>	5. 7	0.92
H28. 12. 15	<u>5. 0</u>	<u>25</u>	<u>21</u>	<u>1.8</u>	<u>1. 9</u>	5. 9	0.70
H29. 2. 6	<u>3, 1</u>	<u>17</u>	<u>4. 0</u>	<u>1.6</u>	1.4	5. 8	0.63
H29.4.11	<u>2. 4</u>	<u>17</u>	<u>7. 9</u>	<u>1. 4</u>	<u>0.94</u>	1.7	0.69
H29. 6. 12	<u>4.4</u>	<u>26</u>	<u>8. 3</u>	<u>2. 1</u>	<u>1.9</u>	5. 3	0.69
地下水の 環境基準	0. 002	0.04	0.01 (注4)	0. 01	0.05	-	_
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5	-

(注1)単位は、水位はm、その他についてはmg/Lである。

(注2)ND:定量下限值未満

(注3)下線は地下水の環境基準を超過しているもの。

(注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

(注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。)

表6 地下水調査結果 (C, 3+10) (観測井) の推移

調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)	水位	
H26. 6. 17	0.0006	0.007	0.007	<u>0.11</u>	<u>1.8</u>	3.8	0.91	
H26. 8. 25	0.0004	ND	ND	<u>0.024</u>	<u>0.41</u>	3. 5	1.57	
H26. 10. 22	ND	ND	ND	0.010	<u>0. 67</u>	3. 3	1.36	
H26. 12. 10	0.0004	ND	ND	0.008	<u>0. 56</u>	3. 9	0.97	
H27. 2. 18	0.0007	ND	ND	<u>0.014</u>	<u>0.93</u>	5. 1	0.70	
H27. 4. 22	ND	ND	ND	0.005	<u>0.39</u>	1. 2	0.82	
H27.6.17	0.0009	ND	ND	0.002	<u>0.17</u>	1.2	0.75	
H27.8.26	ND	ND	ND	0.003	<u>0.19</u>	1.5	1.11	
H27.10.7	ND	ND	ND	0.001	0.033	1.3	1.02	
H27. 12. 10	0.0003	ND	0.002	0.002	<u>0.13</u>	1.5	0.91	
H28.2.3	0.0010	0.006	0.005	0.002	<u>0.19</u>	1. 9	0.84	
H28.4.7	0.0008	ND	ND	0.002	<u>0.47</u>	2. 5	0.75	
H28.6.9	0.0005	ND	0.001	0.002	<u>0.38</u>	1. 2	0.95	
H28.8.4	ND	ND	ND	0.001	<u>0.18</u>	1.5	1.13	
H28. 10. 12	ND	ND	ND	0.001	0.037	2. 2	0.85	
H28. 12. 15	0.0005	ND	ND	0.001	<u>0.25</u>	2. 1	0.68	
H29. 2. 6	0. 0005	ND	ND	0.003	<u>0.50</u>	2. 6	0.62	
H29. 4. 10	0.0007	ND	0.001	0.003	<u>0.39</u>	2.8	0.66	
Н29. 6. 13	0.0010	ND	0.001	0.003	<u>0. 21</u>	3. 2	0.70	
地下水の 環境基準	0. 002	0.04	0.01 (注4)	0.01	0. 05	-	_	
定量下限	0.0002	0.004	0.001	0.001	0.005	0. 5	1	

(注1)単位は、水位はm、その他についてはmg/Lである。

(注2)ND:定量下限值未満

(注3)下線は地下水の環境基準を超過しているもの。

(注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

(注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。)

表7 地下水調査結果 (B+40,2+10)付近浅井戸 (揚水井) の推移

	五1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12012/17 (1997)	717 10	
調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)
H26. 6. 17	<u>0. 025</u>	0.040	0.003	<u>0.32</u>	<u>0.77</u>	25
H26. 8. 25	<u>0.0044</u>	0.013	ND	<u>1.0</u>	<u>1.2</u>	20
H26. 10. 22	<u>0. 0025</u>	0.009	0.007	<u>0.65</u>	<u>0. 56</u>	8.0
H26. 12. 10	<u>0.0021</u>	ND	ND	<u>0. 33</u>	<u>0.73</u>	14
H27. 2. 18	<u>0.022</u>	<u>0.066</u>	<u>0. 13</u>	<u>0.53</u>	<u>0.54</u>	8.0
H27.4.22	<u>0.0066</u>	0.010	ND	<u>0. 27</u>	<u>0.48</u>	3.9
H27. 6. 17	<u>0. 026</u>	<u>0.054</u>	ND	<u>0.46</u>	<u>0. 43</u>	5. 7
H27. 10. 20	<u>0.0024</u>	0.005	ND	<u>0.81</u>	<u>1.5</u>	7. 3
H27. 12. 11	<u>0.0044</u>	0.009	0.010	<u>0. 19</u>	<u>0.34</u>	9. 4
H28.2.4	0.0014	ND	ND	<u>0. 27</u>	<u>0.47</u>	8.0
H28.4.7	0.017	<u>0. 079</u>	<u>0.020</u>	<u>0. 075</u>	<u>0.40</u>	12
H28.6.9	<u>0. 0055</u>	ND	ND	<u>0. 17</u>	<u>0. 49</u>	8.4
H28.8.4	<u>0.0021</u>	ND	ND	<u>0.10</u>	<u>0. 21</u>	3. 7
H28. 10. 12	<u>0. 0025</u>	0.005	0.003	<u>0. 076</u>	<u>0. 17</u>	5. 6
H28. 12. 14	<u>0.018</u>	0.004	0.003	<u>0.071</u>	<u>0. 21</u>	4. 6
Н29.2.7	<u>0.0022</u>	0.005	ND	<u>0. 16</u>	<u>0.40</u>	4.8
H29.4.11	0.0007	ND	0.001	<u>0.066</u>	<u>0. 15</u>	1.4
H29. 6. 13	<u>0.0047</u>	0.008	0.003	<u>0. 58</u>	<u>2.6</u>	3.4
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5

(注1)単位は、mg/Lである。

(注2)ND:定量下限值未満

(注3)下線は地下水の環境基準を超過しているもの。

(注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

(注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。

表8 地下水調査結果 (B+40,2+10)付近深井戸 (揚水井) の推移

調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	へ"ンセ"ン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)
H27. 4. 21	<u>0.45</u>	<u>3. 8</u>	<u>3. 2</u>	<u>2. 2</u>	<u>2.7</u>	4. 4
H27. 6. 17	<u>0.60</u>	<u>3. 7</u>	<u>3. 9</u>	<u>2.4</u>	<u>2.8</u>	5. 3
H27. 10. 20	<u>0. 23</u>	<u>2. 9</u>	<u>1. 9</u>	<u>1.6</u>	<u>3. 3</u>	7. 5
H27. 12. 11	<u>0.54</u>	<u>3. 8</u>	<u>2. 0</u>	<u>1. 9</u>	<u>2. 1</u>	6. 9
H28. 2. 4	<u>0.58</u>	<u>4. 1</u>	<u>2. 0</u>	<u>2.4</u>	<u>2.5</u>	6. 9
H28.4.7	<u>0. 91</u>	<u>2. 5</u>	<u>0. 75</u>	<u>1.4</u>	<u>2.4</u>	6. 7
Н28. 6. 9	<u>0.46</u>	<u>3. 5</u>	<u>1. 0</u>	<u>2.0</u>	<u>2.4</u>	6. 0
H28.8.4	<u>2. 5</u>	<u>0. 35</u>	<u>0. 065</u>	<u>3. 3</u>	<u>1. 9</u>	4. 5
H28. 10. 12	<u>1.6</u>	<u>2. 4</u>	<u>0.72</u>	<u>5. 5</u>	<u>4.2</u>	4. 6
H28. 12. 15	<u>2. 6</u>	0.024	<u>0.011</u>	<u>3. 2</u>	<u>2.4</u>	4.8
Н29. 2. 7	<u>1. 1</u>	<u>0. 95</u>	<u>0.30</u>	<u>1.5</u>	<u>1.7</u>	4. 7
H29. 4. 11	<u>0.47</u>	<u>2. 0</u>	<u>0.67</u>	<u>1.3</u>	<u>1. 1</u>	1.4
H29. 6. 13	<u>0. 69</u>	<u>2. 2</u>	<u>0.54</u>	<u>3. 0</u>	<u>2.4</u>	3.2
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5

(注1)単位は、mg/Lである。

(注2)ND:定量下限值未満

(注3)下線は地下水の環境基準を超過しているもの。

(注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

(注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。

表9 地下水調査結果 (C, 2+40)付近浅井戸(揚水井)の推移

調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)
H26. 6. 17	<u>0. 025</u>	0.040	0.003	<u>0.32</u>	<u>0.77</u>	17
H26.8.25	0.0020	ND	ND	<u>0. 037</u>	<u>0. 29</u>	6. 4
H26. 10. 22	0.0003	ND	ND	<u>0.057</u>	<u>0. 055</u>	5. 3
H26. 12. 10	0.0012	0.005	0.005	<u>0.022</u>	0.031	4. 9
H27. 2. 18	<u>0.0022</u>	0.015	<u>0. 053</u>	<u>0.046</u>	0.044	2.0
H27. 4. 21	ND	0.004	ND	<u>0. 021</u>	<u>0. 086</u>	3. 9
H27. 6. 18	<u>0.028</u>	<u>0.31</u>	<u>0. 16</u>	<u>0.045</u>	<u>0. 19</u>	3. 3
H27. 10. 20	ND	ND	0.002	0.007	0.013	5. 9
H28.4.6	<u>0.0037</u>	0.019	<u>0. 027</u>	<u>0. 022</u>	<u>0.064</u>	3. 9
Н28. 6. 9	0.0005	0.012	<u>0. 038</u>	0.004	0.012	4. 4
Н28.8.3	0.0013	0.010	<u>0. 013</u>	<u>0. 016</u>	0.034	2. 6
H28. 10. 12	0.0016	0.009	0.008	0.002	0.009	2. 5
H28. 12. 15	0.0010	ND	0.002	<u>0. 014</u>	<u>0. 14</u>	2. 1
Н29.2.6	0.0009	0.004	0.008	<u>0.014</u>	<u>0. 054</u>	2.3
H29. 4. 11	<u>0.0025</u>	0.017	<u>0.026</u>	<u>0.021</u>	<u>0. 084</u>	2. 2
H29. 6. 13	0.0016	ND	0.008	<u>0.026</u>	<u>0. 020</u>	3. 3
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	- -
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5

- (注1)単位は、mg/Lである。
- (注2)ND:定量下限值未満
- (注3)下線は地下水の環境基準を超過しているもの。
- (注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)
- (注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。

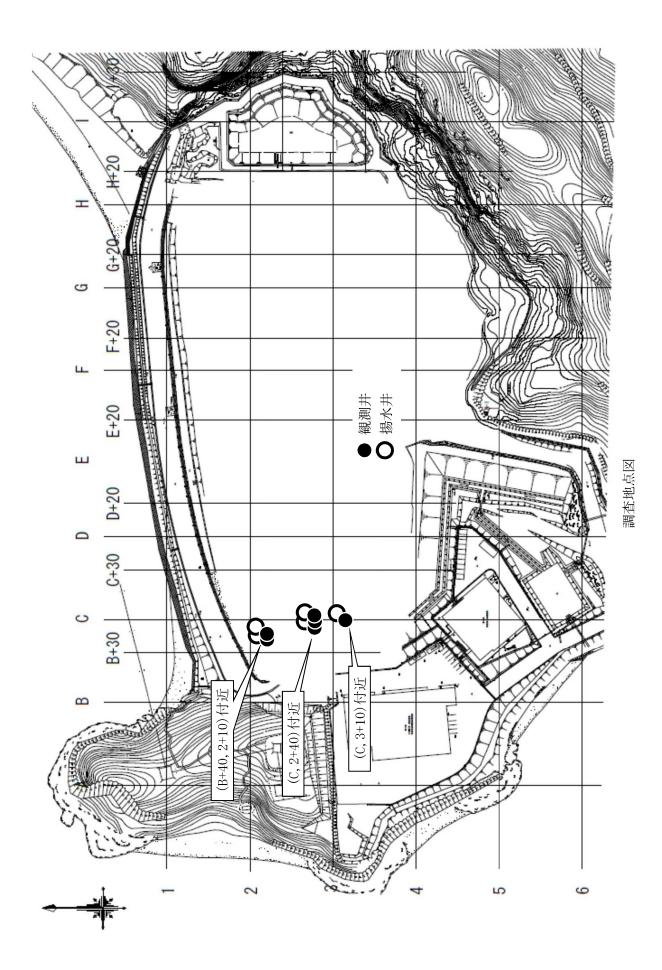
表10 地下水調査結果 (C, 2+40)付近深井戸 (揚水井) の推移

調査年月日	クロロエチレン (注5)	1,2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)
H27. 4. 21	<u>1. 1</u>	<u>12</u>	<u>24</u>	<u>2. 6</u>	<u>3. 0</u>	4.8
H27. 6. 18	<u>1.4</u>	<u>13</u>	<u>26</u>	<u>2.4</u>	<u>2. 0</u>	6.8
H27. 10. 20	<u>0.32</u>	<u>4. 7</u>	<u>8. 7</u>	<u>0.80</u>	<u>1.3</u>	7.3
H27. 12. 11	<u>0.75</u>	<u>6. 1</u>	<u>11</u>	<u>0.96</u>	<u>1. 1</u>	6.7
H28. 2. 4	<u>0.47</u>	<u>6. 7</u>	<u>12</u>	<u>0.96</u>	<u>1.3</u>	6.2
H28.4.6	<u>1. 1</u>	<u>6. 7</u>	<u>12</u>	<u>1. 0</u>	<u>1. 1</u>	7.0
H28.6.9	<u>1.5</u>	<u>18</u>	<u>7. 9</u>	<u>0. 97</u>	<u>1.8</u>	5.4
H28.8.3	<u>1.4</u>	<u>12</u>	<u>10</u>	<u>1.0</u>	<u>1.9</u>	4.6
H28. 10. 12	<u>0.76</u>	<u>7. 4</u>	<u>11</u>	<u>0. 97</u>	<u>1.4</u>	5.5
H28. 12. 14	<u>2. 9</u>	<u>17</u>	<u>2. 4</u>	<u>0.74</u>	<u>1.7</u>	4.8
H29.2.6	<u>0.80</u>	<u>6.3</u>	<u>8. 9</u>	<u>0.73</u>	<u>1.2</u>	5.3
H29. 4. 11	<u>0.81</u>	<u>4.5</u>	<u>9. 1</u>	<u>0.60</u>	<u>1. 1</u>	1.0
H29. 6. 13	<u>0.77</u>	<u>7. 3</u>	<u>16</u>	<u>0.89</u>	<u>1.2</u>	4.2
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5

- (注1)単位は、mg/Lである。
- (注2)ND:定量下限值未満
- (注3)下線は地下水の環境基準を超過しているもの。
- (注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)
- (注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。

表11 地下水調査結果 (C, 3+10)付近浅井戸(揚水井)の推移

	表11 地下水酮重相木(C, 5·10/ F) 过夜开户(汤水开)。2 推移						
調査年月日	クロロエチレン (注5)	1, 2-ジクロロエチレン	トリクロロエチレン	ベンゼン	1,4-ジオキサン	ノルマルヘキサン 抽出物質(油分等)	
H27. 4. 22	0.0005	ND	ND	<u>0.056</u>	<u>0. 26</u>	3.8	
H27. 6. 17	0.0012	ND	ND	<u>0. 018</u>	<u>0. 20</u>	2.8	
H27. 12. 11	0.0005	ND	0.004	<u>0.049</u>	0.034	5. 2	
H28. 2. 4	ND	ND	<u>0.018</u>	<u>0.031</u>	0.005	8. 2	
H28. 4. 7	0.0006	ND	0.008	0.003	0.009	8.8	
H28. 6. 9	ND	ND	0.001	0.005	ND	7. 5	
H28. 8. 4	0.0014	0.009	<u>0.015</u>	0.003	0. 018	3. 4	
H28. 10. 12	ND	ND	0.002	0.005	ND	6. 5	
H28. 12. 15	0.0012	0.006	<u>0.032</u>	0.002	ND	7. 9	
H29. 2. 7	0.0008	0.006	0.002	0.002	<u>0. 057</u>	14	
H29. 4. 11	ND	ND	0.003	0.004	0.008	8. 0	
H29. 6. 13	ND	ND	ND	0.001	ND	8.8	
地下水の 環境基準	0.002	0.04	0.01 (注4)	0.01	0.05	-	
定量下限	0.0002	0.004	0.001	0.001	0.005	0.5	


(注1)単位は、mg/Lである。

(注2)ND:定量下限值未満

(注3)下線は地下水の環境基準を超過しているもの。

(注4)環境省通知に基づき、基準を変更した。(平成26年11月調査までの基準は0.03mg/Lである。)

(注5)環境省通知に基づき、項目名を変更した。(平成29年3月調査までの項目名は塩化ビニルモノマーである。

豊島における周辺環境モニタリング (水質) 結果について

豊島における周辺環境モニタリングは、暫定的な環境保全措置の実施、高度排水処理施設等の建設・運転時、廃棄物等の掘削・運搬の開始後のそれぞれの段階において、周辺環境への影響を把握することを目的としており、これまで、バックグラウンドを確認する事前環境モニタリング、工事前及び工事中、掘削・運搬の開始後の周辺地先海域及び海岸感潮域における調査を順次実施してきた。

今回、平成29年5月に実施した水質調査結果をとりまとめた。

1 調査の経緯

	調査区分	調査期間	工事、運転等との関連
	事前環境モニタリング	平成 10 年 12 月~平成 11 年 12 月	暫定工事の開始前に、バックグラウンド
	∌ 削塚児でークリンク	(4回実施)	を確認するため実施した。
	暫定的な環境保全措置	平成 12 年 7 月 27 日 (木)	事前環境モニタリング終了後、暫定工事
	工事前	平成12年7月27日(木)	開始前に実施した。
			北海岸では本矢板の打設が終了しており、東側の
		平成 13 年 7 月 18 日(水)	ドレーン工を実施していた。また、東側雨水排水
	暫定的な環境保全措置		路、透気遮水シートの施工中であり、西海岸におい
	工事中		ては掘削作業を実施していた。
		平成14年2月1日(金)	西海岸では埋め戻し施工中、西海岸北東部で
		1/2/11 2/11 6 (32)	は透気遮水シート、水路の施工中であった。
	中間保管梱包施設、高度	平成 14 年 7 月 23 日 (火)	中間保管梱包施設のピット部の基礎工事、高度排水
	排水処理施設建設工事	1,90 11 1,91 10 1,00	処理施設の水槽部の基礎工事を実施していた。
	中	平成15年2月6日(木)	中間保管梱包施設の内部仕上げ及び外構工事、高度
	"		排水処理施設の無負荷運転を実施していた。
		平成 15 年 5 月 15 日 (木)	中間処理施設試運転のため、廃棄物等の
		(水質調査)	掘削・運搬作業及び高度排水処理施設等
報		平成 15 年 7 月 14 日 (月)	の運転を実施していた。
		(水質調査、底質調査)	上用15型长型上场6到70 克老佐被5.12型 (2)地
告		平成 15 年 10 月 24 日 (金)	中間処理施設本格稼動後、廃棄物等の掘削・運搬作業
		(水質調査、底質調査)	及び高度排水処理施設等の運転を実施していた。
済		平成 16 年 2 月 10 日(火) (水質調査)	掘削現場の場内整備、高度排水処理施設 等の運転を実施していた。
月		平成 16 年 6 月 1 日 (火)	廃棄物等の掘削・運搬作業、高度排水処理
		(水質調査)	施設等の運転を実施していた。
		平成 16 年 7 月 29 目 (木)	廃棄物等の掘削・運搬作業、高度排水処理
	廃棄物等の掘削・運搬	(水質調査、底質調査)	施設等の運転を実施していた。
	中、高度排水処理施設等	平成 16 年 11 月 2 日 (火)	廃棄物等の掘削・運搬作業、高度排水処
	の運転中	(水質調査、底質調査)	理施設等の運転を実施していた。
		平成 17 年 1 月 14 日 (金)	廃棄物等の掘削・運搬作業、高度排水処
		(水質調査)	理施設等の運転を実施していた。
		平成17年5月23日(月)	廃棄物等の掘削・運搬作業、高度排水処
		(水質調査)	理施設等の運転を実施していた。
		平成 17 年 7 月 21 日 (木)	廃棄物等の掘削・運搬作業、高度排水処
		(水質調査、底質調査)	理施設等の運転を実施していた。
		平成17年11月7日(月)	廃棄物等の掘削・運搬作業、高度排水処
		(水質調査)	理施設等の運転を実施していた。
		平成 18 年 1 月 18 日 (水)	廃棄物等の掘削・運搬作業、高度排水処
		(水質調査)	理施設等の運転を実施していた。
生 . ±п	廃棄物等の掘削・運搬	平成 18 年 5 月 26 日 (金)	廃棄物等の掘削・運搬作業、高度排水処
告 報	中、高度排水処理施設等	(水質調査)	理施設等の運転を実施していた。

	調査区分	調査期間	工事、運転等との関連
	の運転中	平成 18 年 8 月 8 日 (金) (水質調査、底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 18 年 11 月 27 日(月) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 19 年 1 月 24 日 (水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 19 年 6 月 14 日 (木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 19 年 8 月 27 日 (月) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 19 年 11 月 15 日(木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 20 年 1 月 25 日 (金) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 20 年 5 月 21 日(水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 20 年 8 月 27 日 (水) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 20 年 11 月 17 日(月) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 21 年 1 月 28 日 (水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 21 年 5 月 21 日 (木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 21 年 8 月 19 日 (水) 平成 21 年 8 月 20 日 (木) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 21 年 11 月 6 日(金) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 22 年 1 月 20 日 (水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 22 年 5 月 27 日 (木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 22 年 8 月 30 日 (月) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 22 年 11 月 11 日 (木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 23 年 1 月 24 日 (月) 平成 23 年 1 月 25 日 (火) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 23 年 6 月 29 日(水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
済 報	廃棄物等の掘削・運搬 中、高度排水処理施設等	平成 23 年 8 月 26 日(金) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。

	調査区分	調査期間	工事、運転等との関連
	の運転中	平成 23 年 11 月 17 日(木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 24 年 1 月 27 日(金) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 24 年 5 月 16 日(水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 24 年 8 月 2 日(木) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 24 年 11 月 19 日(月) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 25 年 1 月 1 7 日(木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 25 年 5 月 22 日(水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 25 年 8 月 19 日(月) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 25 年 11 月 8 日(金) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 26 年 1 月 22 日(水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 26 年 5 月 26 日(水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 26 年 8 月 7 日(木) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 26 年 11 月 12 日(水) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 27 年 1 月 26 日(月) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 27 年 5 月 25 日(金) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 27 年 7 月 30 日(木) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 27 年 11 月 17 日(火) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 28 年 1 月 28 日(木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 28 年 5 月 19 日(木) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
		平成 28 年 8 月 2 日(火) (水質調査・底質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
報生	廃棄物等の掘削・運搬 中、高度排水処理施設等	平成 28 年 11 月 18 日(金) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。
報告済	の運転中	平成 29 年 1 月 16 日(月) (水質調査)	廃棄物等の掘削・運搬作業、高度排水処 理施設等の運転を実施していた。

	調査区分	調査期間	工事、運転等との関連
報今	処分地内の構造物撤去 中、高度排水処理施設等 の運転中	平成 29 年 5 月 25 日(木) (水質調査)	処分地内の構造物撤去工事、高度排水処 理施設等の運転を実施していた。

2 調査の概要

- 1)調查地点(調查地点図参照)
 - ①周辺地先海域
 - ○水質調査

St-3 (西海岸沖)、St-4 (北海岸沖)及びSt-8 (北海岸沖)

②海岸感潮域

○水質調査

St-A (西海岸)、St-B (北海岸)及びSt-E (北海岸)

- 2) 検体採取機関及び分析機関
 - ①検体採取機関:廃棄物対策課、直島環境センター、環境保健研究センター
 - ②分 析 機 関:直島環境センター、環境保健研究センター、四国計測工業(株)

3 調査結果の概要

(1) 周辺地先海域

水質(表1)

事前環境モニタリングをはじめとするこれまでの調査結果と比べて、特段の差異はみられなかった。

- ○一般項目(生活環境保全上の基準:8項目)
- ・全ての項目については、全ての地点において、環境基準を満足していた。
- ○健康項目(人の健康を保護する上での基準:26項目)
- ・全ての項目については、全ての地点で検出されず、環境基準値を満足していた。

(2)海岸感潮域

水質(表2)

事前環境モニタリングをはじめとするこれまでの調査結果と比べて、特段の差異はみられなかった。

- ○一般項目(7項目)
- ・全ての項目及び地点で、管理基準値を満足していた。
- ○健康項目(26 項目)
- ・硝酸性窒素及び亜硝酸性窒素が St-A 及び St-E において検出されたが、管理基準値を満足していた。
- ・その他の項目は全ての地点で検出されず、管理基準値を満足していた。

表 1 豊島における周辺環境モニタリング (周辺地先海域水質)

(大腸菌群数の単位;MPN/100ml、ダイオキシン類;pg-TEQ/L、p H を除く単位;mg/L) 測定項目 アルキル 六価 トリクロロ テトラクロロ シ゛クロロ 全亜鉛 調査日 COD 油分等 大陽菌群数 全窒素 全リン 総水銀 PCB рΗ DO カト゛ミウム 鉛 ひ素 全シアン クロム 水銀 エチレン エチレン メタン 測定場所 H13. 7. 18 1.3 6. 9 ΝD 2.0 0.12 0.021 _ N D N D N D N D ΝD N D N D N D N D ΝD N D 南海岸沖 St-1 H12, 7, 27 8 0 1.5 6 2 ΝD ΝD 0.57 0 027 _ ND ND ND ΝD ND ΝD ΝD N D ND ΝD 平成29年度 8. 0 8. 2 0. 25 0.022 ΝD H29.5.25 ΝD ΝD ΝD N D ΝD N D N D N D ΝD N D N D ΝD ΝD 8.0 1.5 7.0 ΝD 0.15 0.018 最小 ΝD ΝD ΝD N D ΝD N D ΝD ΝD ΝD ΝD N D ΝD ΝD 平成28年度 8. 1 2. 0 9.5 0.040 ΝD 最大 ΝD N D N D N D ΝD N D N D N D ΝD N D N D N D N D 平均 8. 1 1. 7 8.3 ΝD ΝD 0. 21 0.029 ΝD ΝD ΝD N D N D N D ΝD ΝD ΝD N D N D N D 最小 7.9 1.0 ΝD N D 0.16 0.018 ΝD ΝD ΝD ΝD N D ΝD ΝD ΝD ΝD N D ΝD ΝD 平成27年度 9.9 490 最大 8. 1 1.8 ΝD 0 43 0 036 ΝD 平均 8.5 120 0 26 0.026 ND ND N D 8 0 1 4 ND ND ND ND N D ND ND N D N D ND 最小 7. 8 1 4 6 1 ΝD 2.0 0. 27 0.018 0.007 ΝD ΝD ΝD ND ΝD ΝD ΝD N D N D ΝD ΝD 平成26年度 最大 8 1 1 9 9 5 23 0 41 0 007 ΝD ΝD ΝD N D ΝD N D ΝD ΝD ΝD ND ΝD ΝD 平均 8. 0 1. 6 7. 7 ΝD 13 0.52 0.030 0.007 ΝD ΝD ΝD ΝD ΝD ΝD ΝD ΝD N D ΝD ΝD 最小 8. 1 1 1 ND 0. 15 0.018 ΝD ΝD ND ΝD ΝD ND ΝD ΝD ΝD N D N D ΝD ΝD 平成25年度 8. 1 1. 6 9.6 ΝD 13 0.36 0.038 0.003 N D N D 最大 ΝD ΝD N D ΝD ΝD ΝD N D ΝD ΝD 3.8 0.027 0.002 平均 8. 1 1 4 8.3 0. 23 ΝD ΝD ΝD ΝD ΝD ΝD ΝD ND ΝD ΝD N D ΝD 0.7 0. 13 0.016 ΝD 最小 8.0 6 8 ΝD N D ΝD ΝD ΝD ΝD ΝD N D ΝD N D N D ΝD ΝD 平成24年度 最大 8 1 9 6 ΝD 7.8 0.35 0.03 0.003 ΝD ND 8. 1 1. 6 8.4 3.4 0. 26 0.023 0.002 ΝD N D 平均 ΝD N D N D ΝD N D N D N D N D ΝD ΝD 最小 7. 9 1. 7 5. 8 0. 21 0.020 ΝD N D ΝD ΝD N D ΝD ND ΝD ΝD ND N D N D ΝD ΝD 平成23年度 最大 8. 1 9.8 ΝD N D 0.58 0.045 ΝD ΝD N D ΝD ND ΝD ΝD N D N D N D ΝD ΝD 平均 7.8 ΝD ΝD 0.030 ΝD 8.0 ND N D ΝD ΝD ΝD ΝD ΝD N D N D ΝD ΝD 最小 8 1 1 2 N D N D 0 19 0 006 ΝD ND N D ND ND ND N D N D ND ND ND ND 平成22年度 最大 <u>8</u> 1 9.0 ΝD ΝD 0. 25 0.040 0.003 ΝD ΝD ΝD ΝD ΝD ΝD ND 1. 5 N D N D ΝD ΝD 平均 8. 1 1.4 8. 7 ΝD ΝD 0. 22 0.021 0.002 ΝD 最小 8. 1 1.1 N D N D 0.14 0.019 N D N D N D N D N D N D N D N D N D N D N D N D 平成21年度 9 7 33 0 002 最大 8 2 1 8 ΝD 0 28 0.038 N D N D N D N D N D N D N D N D N D N D N D ND 平均 8. 1 1.5 8. 2 ΝD 15 0.21 0.027 0.002 ΝD 西海岸沖 St-3 最小 ΝD 0.018 ΝD ΝD N D 8.0 0.9 6. 5 ΝD 0.11 ΝD N D ΝD ΝD N D ΝD N D ΝD ΝD 平成20年度 最大 8. 2 2 3 9 3 ΝD 2.0 0. 26 0.028 ΝD N D ΝD 平均 8. 1 1. 7 7. 8 ΝD 1.9 0. 18 0.021 ΝD ND ND 0.023 最小 8.0 1.0 ΝD N D 0.10 0.002 N D N D N D N D N D N D N D N D N D N D N D 平成19年度 8. 5 13 0.006 最大 8. 2 2.6 ΝD 0.19 0.042 N D N D N D ΝD ΝD ΝD ΝD ΝD ΝD ΝD ΝD 平均 1 7 7 5 ΝD 0 030 0 004 ΝD 8. 1 5.3 0. 15 ΝD 最小 8. 2 1.0 7. 6 ΝD N D 0.16 0.024 ΝD 平成18年度 最大 8. 7 4.5 0 27 0.033 0 004 8.3 1 8 ΝD ND N D ND ND ΝD N D ΝD ΝD ND ΝD ΝD 平均 8.3 1.4 8. 1 ΝD ΝD 0. 22 0.027 0.002 ΝD ΝD ΝD ΝD ΝD ΝD ΝD ND ΝD ΝD ΝD 最小 8. 1 1.5 ΝD 1 8 0.10 0.019 0.004 N D N D N D ND N D N D ΝD N D ND ΝD N D 平成17年度 8.3 9.4 220 0. 27 0.049 0.004 最大 ΝD ΝD ΝD ΝD N D ΝD ΝD ΝD N D N D ΝD ΝD 0.030 平均 8. 0 57 0.004 8. 2 N D 0.18 ΝD N D N D N D ΝD N D ΝD N D N D N D ΝD 最小 8.0 1.7 6. 5 ΝD ΝD 0.12 0.018 ΝD ΝD ΝD ΝD ΝD N D ΝD ΝD ΝD ΝD ΝD 平成16年度 最大 N D 23 0.30 0.046 ΝD N D N D ND ΝD ΝD ΝD ND ΝD N D ΝD 平均 8. 0 1.9 7. 9 ΝD 7.1 0.19 0.031 ΝD N D 最小 1. 1 6 7 ΝD ΝD 0.11 0.014 _ ΝD ΝD ΝD ΝD ΝD ΝD 7 7 ΝD ΝD ΝD ΝD ΝD 平成15年度 最大 8 4 1.8 8.6 ΝD 40 0.40 0.045 N D N D ΝD ΝD ΝD N D N D ΝD ND ΝD ΝD 平均 8. 1 1. 5 7. 6 0. 22 0.029 ΝD 11 N D N D N D N D N D N D ΝD N D N D N D N D N D 平成14年度 7.9~8.1 1.6~2.1 6.6~9. ΝD ΝD 0.10~0.63 0.022~0.03 ΝD N D ΝD ΝD ΝD ΝD ΝD N D ΝD ΝD 平成13年度 7.9~8.0 1.4~1.6 7.0~9. 0.12~0.13 0.020~0.021 ΝD N D ΝD N D ΝD N D N D N D ΝD N D N D ΝD ΝD 平成12年度 6. 2 0 42 0.025 8.0 1.6 ΝD ΝD _ ΝD ΝD ΝD ΝD ΝD ΝD ΝD N D ΝD ΝD ΝD 事前環境モニタリング 8.0~ 1.4~ 0.13~ 0.027~ 6.3~ 最小値~最大値 8. 1 2.0 8.9 ΝD 0. 28 0.044 ND ΝD ND ΝD ΝD ΝD ΝD ND N D ΝD ΝD (平均値) (8.0)(1.7)(7.5)(0.22)(0.036)環境基準 7.8~ ≦2 ≥7.5 ΝD ≦1000 ≤ 0.3 ≤ 0.03 $| \le 0.01^4$ ΝD ≦0.0005 ≦0.01 ≤ 0.05 ≦0.01 ΝD N D ≤ 0.03 ≦0.01 ≤ 0.02 ≤0.003 (海域 A・Ⅱ 類型) 8.3 < 0.5 < 0.05 検出下限値 (ND) < 0.5< 0.5<1.8 < 0.003< 0.002< 0.0005 < 0.0005< 0.005< 0.02 < 0.005< 0.1 < 0.0005< 0.002< 0.0005 < 0.002< 0.0003

測定項目											71111				<u>+ /=</u>				LUARR	=1=hpp	シ゛クロロ
	調査	日	рΗ	COD	DO	油分等	大腸菌群数	全窒素	全リン	全亜鉛	アルキル 水銀	総水銀	カト゛ミウム	鉛	大価 クロム	ひ素	全シアン	РСВ	トリクロロ エチレン	テトラクロロ エチレン	メタン
測定場所	平成29年度	H29. 5. 25	8. 0	1.5	8. 2	N D	N D	0.16	0. 022	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	1 100 - 100	最小	8. 1	1.5	7.0	N D	N D	0.16	0.018	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成28年度	最大	8.1	2.6	9.5	ΝD	4. 0	0.29	0.038	N D	ΝD	N D	ΝD	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	N D
		平均	8.1	1.9	8.3	ND	2	0.20	0.028	N D	N D	N D	N D	ND	ND	ND	ND	ND	ΝD	N D	N D
		最小	8.0	1.2	7.2	N D	N D	0.16	0.016	N D	N D	N D	N D	N D	ND	ND	ND	N D	N D	N D	N D
	平成27年度	最大	8.1	1.7	10	N D	490	0.50	0.016	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		平均 最小	8.0	1.5	8.6	N D	120	0.33	0.016 0.016	0.003	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成26年度	<u></u> 最小 最大	7. 9 8. 1	1.0	5.7 9.7	N D	2. 0 23	0. 15 0. 57	0.016	0.003	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D
	十成20千度	平均	8.0	1.5	7.7	ND	13	0.37	0.030	0.007	ND	ND	ND	ND	ND	ND	ND	N D	ND	ND	N D
		最小	8.1	1.1	6.8	N D	N D	0.18	0.018	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成25年度	最大	8. 1	1.8	11	N D	13	0.34	0.034	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D
		平均	8.1	1.5	8.6	ND	3.8	0.24	0.025	N D	ΝD	ND	ND	ΝD	ND	ΝD	ΝD	N D	ΝD	ΝD	N D
		最小	7.9	2.1	6.3	ND	N D	0.17	0.020	N D	N D	ND	N D	N D	N D	ND	ND	N D	N D	ND	N D
	平成24年度	最大	8.1	2.4	9.9	ND	2.0	0.35	0.050	N D	N D	ND	N D	N D	ND	ND	ND	N D	N D	N D	N D
		平均	8.0	2.3	8.1	N D	1. 9	0.27	0. 032	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成23年度	最小 最大	7.9 8.1	2.1	6.3 9.9	N D N D	N D 2. 0	0. 17 0. 35	0. 020 0. 050	N D N D	N D	N D	N D	N D	N D N D	N D	N D	N D	N D	N D	N D
	平成23年度	平均	8.0	2.4	8.1	N D	1. 9	0. 33	0.030	N D	N D N D	N D N D	N D N D	N D N D	N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D
		最小	8.1	1 0	7.7	ND	N D	0. 27	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N D
	平成22年度	最大	8.1	2. 2	9.2	N D	4.5	0.40	0.043	0.004	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D
		平均	8. 1	1.7	8.4	N D	2. 6	0. 25	0.022	0.003	ΝD	N D	ND	N D	ΝD	ND	N D	N D	N D	N D	N D
		最小	8.0	1.3	7.4	ND	N D	0.13	0.017	N D	ΝD	ND	N D	N D	ND	ΝD	ΝD	N D	ΝD	N D	N D
	平成21年度	最大	8.1	1.8	9.8	ND	7. 8	0. 25	0.042	0.002	N D	ND	N D	ND	ND	ND	ND	N D	N D	ND	N D
北海岸沖 St-4		平均	8.1	1.6	8.2	ND	4. 8	0.22	0. 031	0.002	N D	ND	ND	N D	ND	ND	ND	ND	N D	ND	N D
	亚 +00 左 広	最小	8.0	0.9	6.6	N D	N D	0.15	0.014	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成20年度	最大 平均	8.2 8.1	2. 1 1. 5	9. 7 8. 1	N D N D	4. 5 2. 6	0. 25	0.028	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D
		最小	8.0	1.0	6.9	N D	2. 0 N D	0.19	0.020	0.002	ND	ND	ND	N D	N D	N D	N D	N D	N D	ND	N D
	平成19年度	最大	8.3	2.5	8.8	ND	23	0.12	0. 024	0.002	ND	ND	ND	ND	ND	ND	ND	N D	ND	ND	N D
	1 12 10 1 12	平均	8.2	1.8	7.7	ND	8.6	0.22	0. 031	0.004	N D	ND	ND	ND	ND	ND	ND	N D	N D	ND	N D
		最小	8.1	1.2	8.0	N D	N D	0.19	0.026	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成18年度	最大	8.3	2.5	8.6	ΝD	1. 8	0.26	0.038	0.004	ΝD	ND	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	N D
		平均	8. 2	1.6	8.4	ND	N D	0.21	0.030	0.002	N D	ND	N D	N D	ND	ND	ΝD	N D	ΝD	ND	N D
	_ 5	最小	8.0	1.9	7.4	ND	ND	0.14	0.021	0.002	ND	ND	ND	N D	ND	ND	ND	ND	N D	ND	N D
	平成17年度	最大	8.3	3.1	9.4	N D	2.0	0.30	0.044	0.003	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		平均 最小	8. 2 8. 0	2.3	8. 2 6. 5	N D N D	1. 9 2. 0	0.19	0.028	0.003	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D
	平成16年度	<u></u> 最小 最大	8.2	2.4	8.5	ND	540	0.14	0.010		ND	ND	ND	N D	ND	ND	ND	N D	ND	ND	N D
	1 12010 干1支	平均	8.1	2.0	7.5	ND	140	0.21	0.030	_	ND	ND	ND	N D	ND	ND	ND	N D	N D	ND	N D
		最小	7.9	1.1	6.8	N D	N D	0.11	0.015	_	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成15年度	最大	8.4	2.0	8.9	N D	17	0. 28	0.048	_	ΝD	N D	ND	ΝD	ΝD	ND	ΝD	ΝD	ΝD	N D	N D
		平均	8.1	1.7	7.9	ND	6. 2	0.21	0.031	_	N D	ND	N D	N D	ND	ND	ND	ND	ΝD	N D	N D
	平成14		8.0~8.3		7.0~9.4	ND	N D		0.019~0.027		N D	ND	N D	N D	ND	ND	ND	ND	N D	N D	N D
	平成10		7.9~8.1	1.4~1.7	7.0~9.1	N D	N D		0.020~0.022		N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成12		8.0	1.9	6.7	N D	ND	0.17	0.025		ND	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	事前環境 最小値~		8.0~ 8.1	1.5~ 2.2	6.5~ 8.9	N D	_	0.12~ 0.38	0.026~ 0.044	_	N D	ND	ND	N D	N D	ND	N D	N D	N D	N D	N D
	取小胆~ (平均		(8.1)	(1.9)	(7.6)	""		(0.23)	(0.034)	_	ט או	""	ן אט ו	ND	ן אין	ן אט	ם או	ם או	""	ן אט ו	ט או
	環境基準	· II—/	7.8~	≤2	≥ 7. 5	N D	≦ 1000	<u>≤</u> 0.3	<u>≤</u> 0.03	≤0.01 ⁴⁾	N D	≦0.0005	<0.002.8)	≦ 0.01	≦ 0.05	≦ 0.01	ΝD	N D	≦ 0.03	≦ 0.01	≦ 0.02
	tA・Ⅱ類型)		8.3										≤0.003 ⁸⁾								
<u> </u>	限値 (ND)			< 0.5	< 0.5	< 0.5	<1.8	< 0.05	< 0.003	< 0.002	< ∪. 0005	< 0.0005	L<0_0003_//	< 0.005	< 0.02	< 0.005	< 0.1	< 0.0005	< 0.002	< 0.0005	< 0.002

測定項目															T				T	T	
測定場所	調査	日	рΗ	COD	DO	油分等	大腸菌群数	全窒素	全リン	全亜鉛	アルキル 水銀	総水銀	カト゛ミウム	鉛	六価 クロム	ひ素	全シアン	РСВ	トリクロロ エチレン	テトラクロロ エチレン	シ゛クロロ メタン
測足場別	平成29年度	H29. 5. 25	8. 1	1.5	8. 2	ND	N D	0.16	0. 022	ND	N D	N D	N D	ND	N D	N D	N D	ND	ND	ND	ND
	1/2/20-1/2	最小	8.1	1.4	7. 0	ND	N D	0.15	0.022	ND	N D	ND	N D	N D	N D	N D	N D	ND	ND	ND	ND
	平成28年度	最大	8. 1	2. 1	9. 4	ΝD	N D	0.37	0.038	ΝD	N D	N D	N D	N D	N D	N D	N D	ΝD	ND	N D	N D
		平均	8. 1	1. 7	8.3	ND	N D	0. 23	0.029	ND	N D	ΝD	N D	ΝD	N D	N D	N D	ND	ΝD	ΝD	ND
		最小	8.0	1.6	7. 4	ND	N D	0.17	0.016	ND	ND	N D	N D	N D	N D	N D	N D	ND	ND	ND	N D
	平成27年度	最大	8. 1	2. 3	11	ND	240	0. 71	0.020	ND	N D	N D	N D	ND	N D	N D	N D	N D	ND	N D	N D
		平均	8.1	2.0	8.7	N D	61	0.35	0.018	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成26年度	<u>最小</u> 最大	7.9 8.1	1. 3 2. 1	5.6 10	N D N D	23 23	0. 25 0. 69	0.018	0.003 0.004	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D
	十成20千段	<u>取人</u> 平均	8.0	1.7	7. 7	ND	23	0. 44	0.030	0.004	N D	ND	ND	ND	N D	ND	ND	ND	ND	ND	ND
		最小	8.1	1.1	6. 9	ND	N D	0. 19	0.038	N D	N D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	平成25年度	最大	8.1	1.9	10	ND	7. 8	0. 15	0.034	ND	N D	ND	ND	N D	N D	N D	ND	ND	ND	ND	ND
	1 /%20 - / / /	平均	8.1	1.5	8.6	ND	2.0	0. 24	0.026	ND	N D	N D	N D	ND	N D	N D	ND	ND	ND	ND	ND
		最小	7.9	2. 3	6. 3	N D	N D	0.20	0.023	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成24年度	最大	8. 1	2.6	9. 9	N D	2. 0	0. 51	0.050	0.003	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		平均	8.0	2. 5	8. 1	N D	1.9	0.30	0.034	0.002	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		最小	7. 9	2. 3	6. 3	ND	N D	0. 20	0.023	N D	N D	N D	N D	N D	N D	N D	ND	ΝD	ΝD	ND	N D
	平成23年度	最大	8.1	2.6	9.9	N D	2.0	0.51	0.050	0.003	N D	N D	N D	N D	N D	N D	N D	ΝD	ΝD	ΝD	ΝD
		平均	8.0	2. 5	8. 1	ND	1. 9	0.30	0.034	0.002	N D	N D	N D	N D	N D	N D	N D	ΝD	ΝD	N D	ND
		最小	8.1	1.4	8. 1	ND	N D	0.19	0.006	0.002	N D	N D	N D	N D	N D	N D	N D	ND	ND	ND	ND
	平成22年度	最大	8. 1	2.0	9. 1	ND	2.0	0.24	0.036	0.004	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND
		平均	8.1	1.7	8.6	ND	N D	0.22	0.014	0.003	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	ND
		最小	8.1	1.4	7. 3	ND	N D	0.11	0.015	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	N D
北海岸沖 St-8	平成21年度	最大	8.2	1.6	9.8	N D	23	0.24	0.046	0.003	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
40/毎/十/十 りょり		平均	8.2	1.6	8.3	N D	8. 2	0. 20	0.030	0.002	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	亚世00左座	最小	8. 0 8. 2	1.0	6. 6 9. 4	N D	N D 2. 0	0. 17 0. 27	0.013	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成20年度	最大 平均		1.8		N D N D		0.27	0.028	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		<u> </u>	8. 1 8. 0	1. 1	8. 1 7. 0	N D	1. 9 N D	0. 20	0.021	0.003	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D	N D N D	N D N D
	平成19年度	_{取小} 最大	8.3	2. 6	8. 7	N D	11	0. 09	0.023	0.003	N D	ND	N D	N D	ND	ND	N D	ND	ND	ND	ND
	十八八十尺	平均	8.2	2. 1	7. 7	ND	4. 2	0. 20	0.043	0.007	N D	ND	ND	ND	N D	ND	ND	ND	ND	ND	ND
		最小	8.1	0.5	8.1	ND	N D	0. 17	0.023	0.002	ND	ND	ND	ND	ND	N D	ND	ND	ND	ND	ND
	平成18年度	最大	8.3	2.8	8.5	ND	4.5	0. 27	0.023	0.004	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	.,,,,,	平均	8. 2	1.7	8.3	ND	2.0	0. 22	0.029	0.003	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		最小	8. 1	1.9	7. 2	ND	ΝD	0.11	0.019	0.003	ΝD	ND	ND	ΝD	ΝD	ND	N D	ND	ND	ΝD	ΝD
	平成17年度	最大	8.3	3.0	9.3	ND	2. 0	0. 27	0.044	0.003	ND	ND	ND	ND	ND	ND	N D	ND	ND	ND	ND
		平均	8.2	2. 2	8. 0	ΝD	1. 9	0.18	0.030	0.003	N D	N D	N D	N D	N D	N D	N D	N D	ΝD	N D	N D
		最小	8.0	1.6	6. 4	ND	N D	0.14	0.018	_	N D	N D	N D	N D	N D	N D	N D	ND	ND	ND	ND
	平成16年度	最大	8.2	2. 3	8. 5	ND	130	0. 28	0.046	_	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	ND
		平均	8.1	1.9	7. 5	ND	34	0.20	0.030		N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	ND
	_ 5	最小	8.0	1.4	6. 9	ND	N D	0.14	0.014		N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成15年度	最大	8.4	1.8	9.6	N D	25	0.31	0.047	_	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	 	平均	8.1	1.6	8.0	N D	7. 7	0. 23	0.030	_	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成14 平成13		8.0~8.2 8.1	1.3~2.0	6.8~9.5 9.0	ND	N D	0.10~0.20	0.019~0.026 0.020	_	N D N D	N D N D	N D N D	N D N D	N D N D	N D	N D N D	N D	N D N D	N D	N D N D
	事前環境刊		8.0~	1.5~	9.0 6.5~	ND	N D N D ~	0.14 0.12~	0.020	-	Nυ	ND	ן א ט	ע או	ע או	N D	ND	N D	IND	N D	ע או
	∌削環境1 最小値~		8.0~ 8.1	2.1	9.0	ND	2.0	0.12~	0.027~	_	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	ND
	(平均		(8.0)	(1.8)	(7.6)		(ND)	(0. 21)	(0.035)		שוו			"	""		ND	""	""	""	""
	H13. 7		8.0	2.1	7. 3	ND	2.0	0.15	0.023	_	N D	ND	N D	N D	N D	N D	N D	N D	ΝD	ND	N D
家浦港沖 St−5	H12. 7		8.0	1.7	6. 7	ND	1.8	0.19	0.029	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N D
15	環境基準	· - ·	7.8~			,,,,,					,, ,		1,,,,,				110	'''			
	tA·Ⅱ類型)		8.3	≦2	≧7.5	ND	≦1000	≦ 0.3	≦ 0.03	$\leq 0.01^{4)}$	N D	≦ 0.0005	≦0. 003 ⁸⁾	≦ 0.01	≦0.05	≦ 0.01	N D	N D	≦ 0.03	≦0.01	≦ 0.02
検出下	限値(ND)		_	< 0.5	< 0.5	< 0.5	<1.8	< 0.05	< 0.003	< 0.002	< 0.0005	<0.0005	<0.0003 7)	< 0.005	<0.02	< 0.005	< 0.1	<0.0005	< 0.002	<0.0005	< 0.002

測定項目			mth	1, 2-	1, 1–	シス-1, 2-	1, 1, 1-	1, 1, 2-	1, 3-				T+A* \.		± +41¢	硝酸性窒素	1.4				45 ル 地面	ダイオキ
	調査	日	四塩化 炭素	シ゛クロロ	ジクロロ	シ゛クロロ	トリクロロ	トリクロロ	シ゛クロロ	ベンゼン	チウラム	シマシ゛ン	チオヘ゛ン カルフ゛	セレン	有機 リン	及び亜硝酸	1,4 - ジオキサン	ニッケル	モリフ゛デン	アンチモン	塩化物 イオン	シン類 ²⁾
測定場所	1140	7.40		エタン	エチレン	エチレン	エタン	エタン	プロペン							性窒素						
南海岸沖 St-1	H13.7		N D N D	N D N D	N D	N D	N D	N D	N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D	_		ND	0.007	N D 0.001	18, 300 18, 500	0.078
	平成29年度	H29. 5. 25	N D	N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D	N D	N D	N D	N D	N D N D	N D	N D	N D	0.007	0.001	18, 100	0.086
	干队29年度	E	ND	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	0.010	N D	17, 200	0.065
	平成28年度	最大	ND	N D	ND	ND	N D	N D	N D	N D	N D	ND	ND	ND	ND	0.09	ND	ND	0.010	ND	18, 300	0.003
	1 /// 1 //	平均	ND	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	0.04	N D	N D	0.010	ND	17, 600	0.069
		最小	ΝD	ΝD	ΝD	ND	N D	N D	ΝD	ΝD	ΝD	ΝD	ND	ΝD	ΝD	N D	N D	ΝD	0.010	N D	17, 000	0.065
	平成27年度	最大	ΝD	ΝD	ΝD	ND	ΝD	N D	ΝD	ΝD	ΝD	ΝD	N D	ND	ND	0.14	N D	ΝD	0.010	N D	17, 900	0.078
		平均	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	ND	0.05	N D	N D	0.010	N D	17, 400	0.072
	亚己06年中	最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	0.01	N D	N D	0.010	N D	16, 700	0.081
	平成26年度	最大 平均	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.17	N D N D	N D N D	0.011	N D N D	17, 900 17, 400	0.090
		最小	N D	N D	ND	ND	N D	N D	N D	N D	N D	ND	N D	N D	ND	0.00 N D	ND	N D	0.011	ND	16, 700	0.068
	平成25年度	最大	ND	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	0.011	N D	18, 100	0.29
		平均	ΝD	N D	ΝD	ND	N D	N D	N D	N D	N D	ΝD	N D	ND	ND	N D	N D	N D	0.011	ND	17, 600	0.18
		最小	ND	ΝD	ND	N D	N D	N D	N D	ΝD	ΝD	ND	N D	ND	ND	N D	N D	N D	0.011	N D	17, 200	0.070
	平成24年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.06	N D	N D	0.016	N D	18, 000	0.21
		平均 最小	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.03	N D N D	N D N D	0.014	N D N D	17, 500 17, 300	0.14
	平成23年度	最大	ND	N D	ND	ND	N D	N D	N D	N D	N D	ND	N D	ND	ND	0.02	ND	ND	0.009	ND	17, 300	0.10
	1 /2/20 /2	平均	N D	N D	ND	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	0.08	N D	N D	0.010	ND	17, 700	0.092
		最小	ΝD	ΝD	N D	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	ΝD	N D	ΝD	ΝD	N D	18, 000	0.054
	平成22年度	最大	N D	N D	N D	ND	N D	N D	N D	N D	N D	ND	N D	ND	ND	N D	N D	N D	ND	N D	18, 800	0.10
		平均	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D —	N D N D	N D N D	N D N D	18, 500 18, 200	0.077
	平成21年度	最小 最大	ND	N D	ND	ND	N D	N D	N D	N D	N D	N D	N D	ND	ND	0.03		ND	ND	ND	19, 000	0.003
西海岸沖 St-3	1 /0,21 7/2	平均	ND	N D	ND	ND	N D	ND	ND	N D	N D	ND	N D	ND	ND	0.02		ND	ND	ND	18, 500	0.079
		最小	ΝD	ΝD	N D	N D	ΝD	N D	ΝD	N D	ΝD	ΝD	N D	N D	ΝD	N D	_	N D	ΝD	ND	18, 500	0.071
	平成20年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	0.11	_	N D	N D	N D	18, 700	0.074
		平均	N D N D	N D N D	N D N D	N D N D	N D N D	N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.04		N D N D	N D N D	N D N D	18, 600 18, 000	0.073
	平成19年度	<u>最小</u> 最大	ND	N D	ND	ND	N D	N D N D	N D	N D	N D	ND	N D	ND	ND	0.03		ND	ND	ND	19, 100	0.008
	1 10010410	平均	N D	N D	ND	ND	N D	N D	N D	N D	N D	ND	N D	ND	ND	0.06		N D	ND	ND	18, 500	0.17
		最小	ΝD	ΝD	N D	N D	ΝD	N D	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	0.02	_	N D	ΝD	ΝD	17, 700	0.072
	平成18年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0. 13	_	N D	N D	N D	18, 900	0.095
		平均 最小	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.06		N D N D	N D N D	N D N D	18, 300 18, 000	0.084
	平成17年度	最大	ND	N D	ND	ND	N D	N D	ND	N D	N D	ND	ND	ND	ND	0.01		ND	ND	ND	19, 000	0.070
	1 /2 1/2	平均	N D	N D	ND	N D	N D	N D	ND	N D	N D	ND	N D	N D	ND	0.04	_	ND	N D	ND	18, 700	0.077
		最小	ΝD	ΝD	N D	ND	N D	N D	N D	ΝD	ΝD	N D	N D	ND	ND	N D	_	N D	ND	N D	18, 200	0.079
	平成16年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	0. 20		N D	0.010	N D	19, 200	0.32
		平均 最小	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.07 N D		N D N D	0.009 N D	N D N D	18, 500 17, 400	0.20
	平成15年度	最大	ND	N D	ND	ND	N D	N D	ND	N D	N D	ND	N D	ND	ND	0.15		ND	ND	0.001	18, 800	0.091
	1 /2010 1 /2	平均	N D	N D	ND	N D	N D	N D	ND	N D	N D	ND	N D	N D	ND	0.07	_	N D	N D	0.001	17, 800	0.11
	平成14	4年度	ΝD	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	ΝD	ΝD	N D	ND	ΝD		_	N D	ΝD	ΝD	17, 900~19, 200	0.077~0.087
	平成13		N D	ND	ND	ND	N D	N D	N D	N D	ND	ND	N D	N D	ND			N D	ND	ND	18, 300~18, 800	0.079~0.25
	平成12 事前環境		N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	ND			N D	N D <0.007∼	ND	18, 500	0.075
	争削環境 最小値~ (平均	最大値	N D	ΝD	ND	ND	N D	N D	N D	N D	N D	ΝD	ΝD	ND	_	_	_	ND	0.007~ 0.013 (0.009)	ND	17, 400~ 18, 600 (18, 000)	0.065
	環境基準 成A・Ⅱ 類型)		≦ 0.002	≦ 0.004	≦0.1 ⁶⁾	≦ 0.04	≦ 1	≦ 0.006	≦ 0.002	≦ 0.01	≦ 0.006	≦ 0.003	≦ 0.02	≦ 0.01	-	≦10	≦ 0.05	_	0.07 3)	0. 02 3)	_	≦ 1
検出下	限値(ND)		<0.0002	< 0.0004	< 0.002	< 0.004	< 0.0005	< 0.0006	<0.0002	< 0.001	< 0.0006 ⁵⁾	< 0.0003	< 0.002	< 0.005	< 0.1	< 0.01	<0.005	< 0.05	< 0.007	< 0.001	_	_

測定項目			四塩化	1, 2-	1, 1-	シス-1, 2-	1, 1, 1-	1, 1, 2-	1, 3-				T+4*1;			硝酸性窒素	1 4				たル畑	タ゛ イオキ
	調査	日	炭素	ジクロロ	ジクロロ	ジクロロ	トリクロロ	トリクロロ	シ゛クロロ	ベンゼン	チウラム	シマシ゛ン	チオヘ゛ン カルフ゛	セレン	有機 リン	及び亜硝酸	1, 4 - ジオキサン	ニッケル	モリフ゛デン	アンチモン	塩化物 イオン	ラン類 ²⁾
測定場所		T		エタン	エチレン	エチレン	エタン	エタン	プロペン						-	性窒素						
	平成29年度	H29. 5. 25	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D		- 010		18, 200	0.000
	平成28年度	<u>最小</u> 最大	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D 0.09	N D N D	N D N D	0.010	N D N D	17, 100 18, 000	0.063
	十八/20十月	平均	ND	N D	ND	ND	ND	ND	ND	N D	ND	ND	ND	ND	N D	0.09	N D	ND	0.010	ND	17, 400	0.077
		最小	ND	N D	N D	ND	ND	N D	ND	N D	N D	ND	ND	ND	N D	N D	N D	N D	0.009	ND	16, 600	0.070
	平成27年度	最大	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	ND	N D	N D	0.15	N D	N D	0.011	ND	17. 900	0.079
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.05	N D	N D	0.010	N D	17, 300	0.075
		最小	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	ΝD	ΝD	N D	0.05	N D	ΝD	0.009	N D	16, 700	0.080
	平成26年度	最大	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	ND	N D	N D	0.17	N D	ND	0.009	N D	17, 900	0.130
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.09	N D	N D	0.009	N D	17, 400	0.105
		最小	N D	ΝD	N D	N D	ΝD	N D	N D	N D	N D	ND	ND	N D	ΝD	N D	N D	ΝD	0.011	N D	16, 700	0.051
	平成25年度	最大	N D	N D	N D	N D	ND	N D	N D	N D	N D	ND	ND	N D	ΝD	N D	N D	ND	0.011	N D	18, 100	0.062
		平均	N D	ΝD	N D	N D	ΝD	ΝD	N D	N D	N D	N D	N D	N D	N D	N D	N D	ΝD	0.011	N D	17, 600	0.057
]		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.011	N D	17, 100	0.070
	平成24年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.06	N D	N D	0.013	N D	17, 900	0.083
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.02	N D	N D	0.012	N D	17, 500	0.077
	亚世22年中	最小	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	ND	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.01	N D N D	N D N D	N D N D	N D N D	17, 300 17, 800	0.081
	平成23年度	<u>最大</u> 平均	N D	N D	N D	N D	ND	N D	N D N D	N D	N D	N D	N D	N D	N D	0.23	N D	N D	N D	N D	17, 800	0.084
		最小	ND	N D	N D	ND	ND	N D	ND	N D	N D	ND	ND	ND	N D	0.07 N D	N D	ND	ND	ND	18, 500	0.056
	平成22年度	最大	ND	N D	N D	N D	ND	N D	N D	N D	N D	ND	ND	ND	N D	0.03	N D	N D	ND	ND	18, 900	0.089
	1 /2/22 - /2	平均	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	0.02	N D	N D	N D	N D	18, 600	0.073
		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	_	N D	ND	N D	18, 100	0.064
	平成21年度	最大	N D	N D	N D	ΝD	ΝD	N D	N D	N D	ΝD	ND	ΝD	N D	N D	0.02	_	ΝD	N D	N D	18, 900	0.090
北海岸沖 St-4		平均	N D	ND	N D	ND	ND	N D	N D	N D	N D	ND	N D	ND	ΝD	0.01	_	ΝD	N D	N D	18, 600	0.077
		最小	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	N D		ΝD	N D	N D	18, 500	0.073
	平成20年度	最大	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	ND	N D	N D	0.12	_	N D	ND	N D	18, 900	0.074
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	N D	0.05		N D	N D	N D	18, 700	0.074
		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.03		N D	N D	N D	17, 800	0.067
	平成19年度	<u>最大</u> 平均	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.11		N D N D	N D N D	N D N D	19, 300 18, 500	0.086
		最小	N D	N D	N D	N D	ND	N D	ND	N D	N D	N D	N D	ND	N D	0.07		N D	ND	N D	17, 500	0.077
	平成18年度	最大	ND	ND	N D	ND	ND	ND	ND	N D	N D	ND	ND	ND	N D	0.03		ND	ND	ND	18, 500	0.093
	干风10千度	平均	ND	N D	N D	N D	ND	N D	ND	N D	N D	ND	ND	ND	N D	0.07	_	N D	ND	ND	18, 200	0.096
		最小	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	ND	N D	N D	0.02	_	ND	ND	N D	17, 500	0.075
	平成17年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.09	_	N D	N D	N D	18, 700	0.089
		平均	N D	ΝD	ΝD	N D	ΝD	ΝD	ΝD	N D	ΝD	N D	N D	ΝD	N D	0.05	_	ΝD	N D	N D	18,000	0.082
		最小	N D	ΝD	N D	N D	ΝD	N D	N D	N D	N D	ΝD	ΝD	N D	ΝD	N D	_	ΝD	ΝD	ΝD	17, 800	0.078
	平成16年度	最大	N D	ΝD	ΝD	N D	ΝD	ΝD	ΝD	N D	ΝD	ΝD	N D	ΝD	ΝD	0.18	_	ΝD	0.007	N D	18, 800	0.083
]		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.06		N D	0.007	N D	18, 300	0.081
	# # 1 F # #	最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D		N D	N D	N D	17,000	0.086
	平成15年度	最大	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	0.15		ND	N D	N D	19,000	0.17
	平成14	平均	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.07		N D N D	N D N D	N D N D	17, 700 17, 900~19, 300	0.12
	平成14		N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	_		N D	N D	N D	18, 200~18, 800	0.077~0.
	平成1		ND	N D	N D	ND	ND	N D	ND	N D	N D	ND	ND	ND	N D	 		ND	0.007	0.001	18. 300	0.086
	事前環境		.,, 5	., 5	1, 0	,,,,,,	,,,,,	,, ,	,, ,	., ,	1, 0	.,,,,,	.,,,,,	., 5	.,,,,,		_	., 0	0.008~	0.001	17, 200~	5.000
	最小値~		ND	ΝD	ΝD	N D	ND	N D	N D	N D	ΝD	N D	N D	ΝD	_	_	_	ΝD	0.012	N D	18, 600	0.065
	(平均															<u> </u>			(0.009)		(17, 900)	<u> </u>
	環境基準		≦0.002	≦0.004	≤0.1 ⁶⁾	≦0.04	≦ 1	≦0.006	≦ 0.002	≦0.01	≦0.006	≦ 0.003	≦0.02	≦ 0.01		≦10	≦0.05	_	0.07 3)	0. 02 3)	_	≦ 1
	或 <u>A・Ⅱ 類型)</u>																					
<u> </u>	限値 (ND)		< 0.0002	< 0.0004	< 0.002	< 0.004	<0.0005	< 0.0006	<0.0002	< 0.001	< 0 0006 ⁵⁾	< 0.0003	< 0.002	< 0.005	< 0.1	< 0.01	<0.005	< 0.05	< 0.007	< 0.001	_	_

測定項目			_ ,- ,- ,,	1. 2-	1, 1-	シスー1, 2ー	1, 1, 1-	1, 1, 2-	1.3-							硝酸性窒素	1				15 // 4/	h* /11
MAC XII	調査	日	四塩化	シ゛クロロ	シ゛クロロ	シ・クロロ	トリクロロ	トリクロロ	シ゛クロロ	ベンゼン	チウラム	シマシ゛ン	チオヘン	セレン	有機	及び亜硝酸	1, 4 - ジオキサン	ニッケル	モリブデン	アンチモン	塩化物	9° 1774
測定場所			炭素	エタン	エチレン	エチレン	エタン	エタン	プロペン				カルフ゛		リン	性窒素	ソーオキザン		, ,		イオン	シン類 ²⁾
	平成29年度	H29. 5. 25	N D	ΝD	N D	N D	N D	ΝD	N D	N D	ΝD	N D	ΝD	ΝD	N D	N D	N D	-	_		18, 100	_
		最小	ND	ND	N D	N D	N D	ND	N D	N D	ND	N D	ND	ND	N D	N D	N D	N D	0.010	N D	17, 200	0.064
	平成28年度	最大	ΝD	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	0.08	N D	N D	0.010	N D	18, 000	0.064
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	0.03	N D	ND	0.010	N D	17, 500	0.064
	T-07-	最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	0.01	N D	N D	0.009	N D	16, 700	0.061
	平成27年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.15	N D	N D	0.011	N D	17, 800	0.094
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.05	N D	N D	0.010	N D	17, 300	0.078
	亚己06年中	最小	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.01	N D N D	N D N D	0.009 0.010	N D N D	16, 600 17, 700	0.065 0.078
	平成26年度	<u>最大</u> 平均	ND	N D	ND	ND	N D	ND	ND	ND	N D	N D	ND	ND	N D	0.17	N D	ND	0.010	ND	17, 700	0.078
		最小	ND		ND	ND		ND	ND	ND	N D	N D	ND	ND	N D	0.07	N D	ND	0.010	ND	17, 300	0.072
	平成25年度	最大		ND			N D									0.02			0.010		18, 000	0.32
	平成20年度	平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D		N D	N D	0.013	N D	17, 700	0.32
		最小	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.04 N D	N D N D	N D N D	0.012	N D N D	17, 700	0.19
	平成24年度	最大	N D	ND	ND	ND	N D	ND	N D	ND	ND	N D	ND	ND	N D	0.06	N D	ND	0.008	ND	17, 100	0.070
	十八八二十八尺	<u>取入</u> 平均	ND	ND	ND	ND	N D	ND	ND	ND	ND	N D	ND	ND	N D	0.00	ND	ND	0.013	ND	17, 500	0.071
		最小	ND	ND	ND	ND	N D	ND	ND	ND	ND	N D	ND	ND	ND	0.02	ND	ND	0.008	ND	17, 300	0.068
	平成23年度	最大	ND	ND	ND	ND	N D	ND	ND	ND	ND	N D	ND	ND	ND	0. 23	ND	ND	0.010	ND	17, 800	0.003
	1/220-12	平均	ND	N D	N D	N D	N D	ND	ND	N D	ND	N D	ND	ND	N D	0.09	N D	ND	0.009	N D	17, 600	0.071
		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	0.01	N D	ND	N D	N D	18, 000	0.055
	平成22年度	最大	ND	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	0.02	N D	N D	N D	N D	18, 800	0.080
		平均	ΝD	ΝD	ΝD	ΝD	N D	ΝD	N D	ΝD	ND	N D	ΝD	ΝD	ΝD	0.01	ΝD	ND	ND	N D	18, 500	0.068
		最小	N D	ΝD	N D	N D	N D	N D	N D	N D	ΝD	N D	N D	ND	N D	0.01	_	ND	N D	N D	18, 200	0.058
北海岸沖 St-8	平成21年度	最大	ND	ND	ND	ΝD	N D	N D	ND	N D	ΝD	N D	ND	ND	ND	0.03	-	ND	N D	N D	18, 800	0.10
AB/M/T/1 Of 0		平均	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	0.02	_	N D	N D	N D	18, 500	0.079
		最小	N D	ND	N D	N D	N D	ND	N D	N D	ND	N D	ND	ND	N D	N D	_	N D	ND	N D	18, 500	0.074
	平成20年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	0.12	_	ND	N D	N D	18, 900	0.087
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	0.04	_	N D	N D	N D	18, 700	0.081
		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	N D	0.03		ND	N D	N D	17, 700	0.061
	平成19年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.11		ND	N D	N D	19,000	0.11
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.06		N D	N D	N D	18, 500	0.086
	平成18年度	<u>最小</u> 最大	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.02	_	N D N D	N D N D	N D N D	18, 000 18, 800	0.082
	平成18年度	<u>取入</u> 平均	N D	N D	ND	ND	N D	ND	ND	ND	ND	N D	ND	ND	N D	0.14		ND	ND	ND	18, 300	0.088
		最小	ND	N D	ND	ND	N D	ND	N D	ND	ND	N D	ND	ND	ND	0.00	_	ND	ND	ND	17, 300	0.088
	平成17年度	最大	ND	N D	ND	ND	N D	ND	ND	ND	ND	N D	ND	ND	ND	0.07	_	ND	ND	N D	18, 700	0.095
	1/2//-/2	平均	ND	ND	N D	ND	N D	ND	N D	N D	ND	N D	ND	ND	ND	0.03	_	ND	ND	N D	18, 000	0.092
		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	_	N D	0.008	N D	17, 400	0.077
	平成16年度	最大	ΝD	ND	ΝD	ΝD	N D	ΝD	N D	ΝD	ND	N D	ΝD	ΝD	ΝD	0. 21	_	ΝD	0.008	N D	19, 600	0.55
		平均	ΝD	ΝD	ΝD	ΝD	N D	ΝD	N D	ΝD	ΝD	N D	ND	ΝD	ΝD	0.07	_	ND	0.008	N D	18, 400	0.31
		最小	ΝD	ND	ΝD	ΝD	ΝD	N D	ND	ΝD	ΝD	ΝD	ΝD	ΝD	N D	N D	-	N D	N D	N D	16, 600	0.080
	平成15年度	最大	ΝD	N D	N D	N D	N D	N D	N D	N D	ΝD	ΝD	ND	ΝD	N D	0.15	_	ND	0.007	0.004	19,000	0.18
		平均	N D	ND	N D	N D	N D	N D	ND	N D	ΝD	N D	ND	ND	ND	0.07	_	ND	0.007	0.002	17, 600	0.14
	平成14		ΝD	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	_		N D	N D	N D	17, 900~19, 300 C	0.077~0.079
	平成13		N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	ND	ND	N D	_	_	ND	N D	N D	18, 700	0.079
	事前環境		l l					l l					l	l			-		0.008~		17, 300~	0 005
	最小値~		N D	N D	N D	ND	ΝD	ND	N D	N D	N D	ΝD	ND	ND	_	_	-	N D	0.010	N D		0.065
	(平均	· II— /	L	NI 5	NI D	N. D		N 5	N 5			N. S	N 5	N. 5			_		(0.009)		(17, 900)	0.41
家浦港沖 St-5	H13. 7		N D N D	N D	N D	N D	N D N D	N D	N D	N D	N D	N D	N D	N D	N D	 -		N D N D	0.007	N D 0, 001	17, 900	0.41
T	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	1. 41		N D	N D	N D		N D	N D	N D	N D	N D	N D	N D	N D			ND			18, 200	0.084
	录現基準 或A・Ⅱ類型)		≦ 0.002	≦0.004	≦0.1 ⁶⁾	≦0.04	≦ 1	≦ 0.006	≦ 0.002	≦0.01	≦ 0.006	\leq 0.003	≦ 0.02	≦0.01	_	≦10	≦ 0.05	_	0.07 3)	0.02 3)	. – 1	≦ 1
	Rediction (ND)		< 0.0002	< 0.0004	< 0.002	< 0.004	< 0.0005	< 0.0006	<0.0002	< 0.001	< 0.0006 ⁵⁾	< 0.0003	< 0.002	< 0.005	< 0.1	< 0.01	<0.005	< 0.05	< 0.007	< 0.001		
1) 車前標倍エニタリング		0.40.1144.0.0								· H13 7 18	. 0. 0000		2 1宇施		F · H1/1 7			₹0.00	\ ∪. ∪∪/	₹0.001		

¹⁾事前環境モニタリング: H11.1.21、H11.6.16、H11.9.9、H11.11.29実施 平成12年度: H12.7.27実施 (St-3、St-4) 平成13年度: H13.7.18 (St-3、St-4)、H14.2.1実施 平成14年度: H14.7.23、H15.2.6実施

平成15年度: H15. 5. 15、H15. 7. 14、H15. 10. 24、H16. 2. 10実施 平成16年度: H16. 6. 1、H16. 7. 29、H16. 11. 2、H17. 1. 14実施 平成17年度: H17. 5. 23、H17. 7. 21、H17. 11. 7、H18. 1. 18実施 平成18年度: H26. 5. 26、H18. 8. 8、H18. 11. 27、H19. 1. 24実施 平成19年度: H19. 6. 14、H19. 8. 27、H19. 11. 15、H20. 1. 25実施 平成23年度: H20. 5. 21、H20. 8. 27、H20. 11. 17、H21. 1. 15 H23. 1. 25実施 平成23年度: H27. 5. 15、H27. 7. 30、H27. 11. 17、H28. 1. 28実施 平成25年度: H27. 5. 15、H27. 7. 30、H27. 11. 17、H28. 1. 28実施 平成25年度: H27. 5. 15、H27. 7. 30、H27. 11. 17、H28. 1. 28実施 平成25年度: H28. 5. 19、H28. 8. 2、H28. 11. 18、H29. 1. 16実施 平成25年度: H27. 5. 22、H25. 8. 19、H25. 11. 8、H26. 1. 22実施 平成26年度: H26. 5. 26、H26. 8. 7、H26. 11. 12、H27. 1. 22実施 平成25年度: H27. 5. 15、H27. 7. 30、H27. 11. 17、H28. 1. 28実施 平成25年度: H28. 5. 19、H28. 8. H18. 11. 27、H19. 1. 24実施 平成25年度: H27. 5. 21、H21. 11. 6、H22. 1. 20実施 平成25年度: H26. 5. 26、H26. 8. 7、H26. 11. 12、H27. 1. 22実施 平成25年度: H27. 5. 15、H27. 7. 30、H27. 11. 17、H28. 1. 28実施

²⁾ ダイオキシン類(コプラナーPCBを含む)は、事前環境モニタリングについては1回分(H11.11.29)の測定データである。

³⁾ 要監視項目指針値

⁴⁾生物特A類型(生物A類型の水域のうち、水生生物の産卵場(繁殖場)又は幼稚仔の生育場として特に保全が必要な水域)の基準値

⁵⁾ 環境庁通知に基づき、検出下限を変更した。(平成17年7月調査までの検出下限値は0.001mg/Lである。)

⁶⁾環境省通知に基づき、環境基準を変更した。(平成22年1月調査までの環境基準値は0.02mg/Lである。)

⁷⁾環境庁通知に基づき、検出下限を変更した。(平成24年1月調査までの検出下限値は0.001mg/Lである。)

⁸⁾ 環境省通知に基づき、環境基準を変更した。(平成24年1月調査までの環境基準値は0.01mg/Lである。)

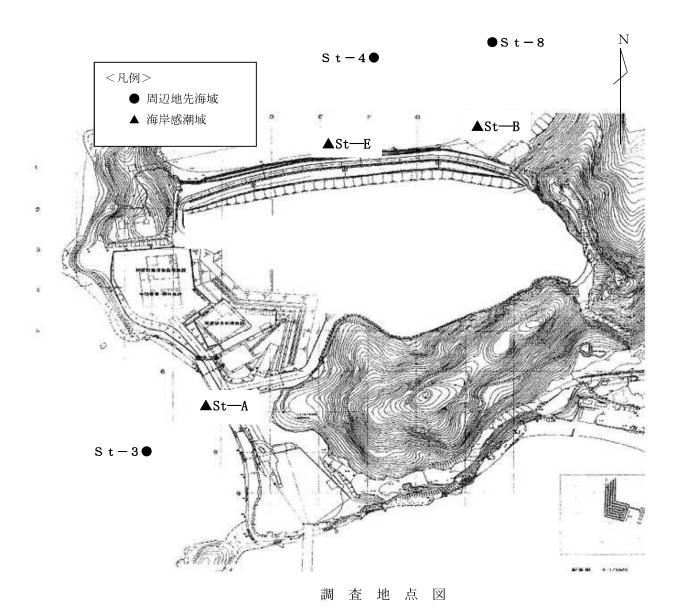
⁹⁾ 赤字は海域の環境基準を超過したものを示す。

表2 豊島における周辺環境モニタリング (海岸感潮域間隙水水質)

(大腸菌群数の単位: MPN/100ml、ダイオキンン類: pg-TEQ/L、p H を除く単位: mg/L)

測定項目											(計数の単位	<u>V. , WIF NI/ I</u>		111775段,	pg-1Lu/	1		1		
MACAL	調査	· B	Ηα	COD	油分等	大腸菌	全窒素	全リン	全亜鉛	アルキル	総水銀	カト゛ミウム	鉛	六価	ひ素	全シアン	РСВ	トリクロロ	テトラクロロ	ジクロロ	四塩化
測定場所	13-7 300	. —	F		7,473 13	群数				水銀	11073122	<i>"</i> 1 1/-1	20	クロム			'	エチレン	エチレン	メタン	炭素
	平成29年度	H29. 5. 25	7. 9	1.4	N D	N D	0.33	0.044	0.012	N D	ΝD	ΝD	N D	N D	N D	ΝD	ΝD	N D	N D	N D	ΝD
	1 19,20 - 19	最小	7. 7	1.1	ND	N D	0.19	0.025	0.012	N D	ND	ND	ND	N D	ND	ND	ND	N D	N D	ND	ND
	平成28年度	最大	8.0	2.5	0.6	ND	0.19	0.052	0.012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	十八20十尺	平均	7.8	1.8	0.5		0.38	0.032	0.029						ND	ND	ND	ND	ND	N D	
						N D				N D	N D	N D	N D	N D							N D
	T-07	最小	7.8	1.0	N D	N D	0.19	0.034	0.005	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成27年度	最大	7.9	2.6	N D	N D	0.35	0.049	0.079	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		平均	7.9	1.8	N D	N D	0. 27	0.038	0.032	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		最小	7.7	0.8	N D	2. 0	0. 24	0.027	N D	N D	N D	ND	ND	N D	ND	ND	ND	ND	N D	N D	ND
	平成26年度	最大	8.0	2. 6	N D	2. 0	0.47	0.033	0.085	N D	N D	N D	N D	N D	ND	ND	N D	ND	N D	N D	ND
		平均	7. 9	1.4	N D	2. 0	0.33	0.030	0.024	N D	ND	ND	ND	N D	ND	ND	ND	ND	N D	N D	ND
		最小	7. 6	1.2	N D	N D	0. 24	0.020	ND	N D	ND	N D	ND	N D	ND	ND	N D	N D	N D	N D	ND
	平成25年度	最大	7.9	2.1	N D	4. 5	0.48	0.88	0.016	N D	ND	0.001	N D	N D	ND	ND	N D	ND	N D	N D	ND
		平均	7.8	1.7	ND	N D	0.35	0.45	0.008	ND	ND	0.0003	ND	ND	ND	ND	ΝD	ND	ND	ND	ND
	ļ	最小	7.8	1.0	N D	N D	0.15	0.020	ND	ND	ND	ND	N D	N D	ND	ND	ND	ND	ND	N D	ND
	平成24年度	最大	8.0	1.7	N D	N D	0.39	0.073	0.020	ND	N D	N D	N D	N D	ND	ΝD	ΝD	ND	N D	N D	ND
		平均	7.9	1.5	N D	N D	0. 25	0.036	0.013	ND	ΝD	N D	ND	ND	ND	ΝD	ΝD	ND	N D	ΝD	ND
		最小	7.6	1.1	N D	N D	0.17	0.024	0.006	N D	N D	N D	N D	N D	ND	ND	ND	ND	N D	N D	ND
	平成23年度	最大	8.0	11	N D	2. 0	0.48	0.032	0.040	N D	N D	ND	ND	ND	ND	ND	N D	N D	N D	ΝD	ND
		平均	7. 7	3.7	ND	1. 9	0.34	0.028	0.022	ND	N D	ND	ND	ND	ND	ND	ND	ND	N D	ΝD	ND
		最小	7.5	0.5	N D	N D	0. 25	0.025	0.005	N D	N D	ND	ND	N D	ND	ΝD	N D	ND	N D	N D	ND
	平成22年度	最大	7.8	1.8	N D	N D	0.31	0.036	0.036	N D	ND	ND	ND	N D	ND	ND	N D	ND	N D	N D	ND
		平均	7.7	0.9	ND	N D	0. 27	0.032	0.018	ND	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND
		最小	7.5	0.7	ND	N D	0.15	0.024	ND	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	N D	ND
	平成21年度	最大	7.7	1.7	ND	2. 0	1.5	0.042	0.029	ИD	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND
西海岸St-A		平均	7. 6	1.1	ND	1. 9	0.59	0.031	0.012	ND	ND	ND	ND	ND	ND	ΝD	ΝD	ND	ND	N D	ND
		最小	7. 6	ND	N D	N D	0.17	0.024	0.004	ND	ND	ND	ND	ND	ND	ΝD	N D	ND	ND	N D	ΝD
	平成20年度	最大	8.0	ND	ND	4. 5	0.32	0.047	0.026	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND	ND
		平均	7.8	ΝD	ΝD	2. 5	0. 25	0.035	0.015	ΝD	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD
		最小	7. 6	ΝD	ND	N D	0.17	0.024	ND	ND	ND	ND	ND	ND	ND	ΝD	ΝD	ND	ND	N D	ND
	平成19年度	最大	7.8	0.6	ND	2. 0	0.81	0.052	0.014	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND	ND
		平均	7.7	0.5	ΝD	1. 9	0.41	0.040	0.008	ND	ND	ΝD	ΝD	ΝD	ND	ΝD	ΝD	ΝD	N D	ΝD	ΝD
		最小	7. 6	ΝD	ΝD	N D	0. 27	0.037	0.012	ΝD	ND	ΝD	ND	ND	ND	ΝD	ΝD	ND	ND	ΝD	ΝD
	平成18年度	最大	8.0	1.3	ΝD	N D	0.47	0.096	0.028	ΝD	ND	ΝD	ND	ND	0.007	ND	ΝD	ND	ND	N D	ΝD
		平均	7.8	0.8	ND	ND	0.37	0.068	0.021	ΝD	ND	ND	ND	ND	0.003	ΝD	ΝD	ND	ND	ΝD	ND
		最小	7.8	1. 2	ND	N D	0.13	0.028	0.010	ND	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND
	平成17年度	最大	8.0	1.7	N D	2. 0	0.43	0.057	0.021	ΝD	ND	ND	ND	ND	0.007	ΝD	ΝD	ND	ND	ND	ND
		平均	7.9	1.5	N D	1. 9	0.31	0.039	0.016	N D	ND	ND	ND	ND	0.006	ND	ND	ND	N D	N D	ND
	T #16##	最小	7.6	0.6	N D	N D	0. 21	0.035	_	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成16年度	<u>最大</u> 平均	7. 9 7. 8	1.9 1.4	N D N D	2. 0 1. 9	0.44	0.043	_	N D N D	N D N D	N D N D	0.007	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D
ŀ		最小	7.8	0.7	ND	1.9 N D	0. 29	0.039	_	ND	ND	N D	0.006 N D	N D	ND	ND	ND	ND	ND	N D	ND
	平成15年度	最大	8.3	1.4	ND	ND	0.43	0.032	_	ND	ND	N D	ND	ND	ND	ND	ND	ND	ND	N D	ND
	八人八十八人	平均	8.0	1.1	ND	N D	0. 43	0.042		ND	ND	N D	ND	N D	ND	ND	ND	ND	ND	N D	ND
	 平成14		7.7~8.4	1.3~1.4	ND	ND	0.11~0.40	0.045~0.060		ND	ND	N D	ND	ND	ND	ND	ND	ND	ND	ND	ND
	平成14		7.4~8.0	1.2~1.7	ND	N D	0.11~0.40	0.040~0.052		ND	ND	N D	ND	ND	ND	ND	ND	ND	ND	N D	ND
	平成13 平成12		7.7	1.0	ND	N D	0.12~0.23	0.041	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N D	ND
	事前環境		7.6~	1.0~	ND	וא ט	0.27	0.026~	_	ND	ND	IN D	ND	ND	שאו	IN D	IND	ו וא ט	I N D	ND	שמו
	∌削環境 ¹ 最小値~		7.6 ∼ 8.0	1.7	ND	_	0.16~	0.026~	_	ND	N D	ND	N D	N D	ND	N D	N D	N D	N D	N D	N D
	取小禮~ (平均		(7.8)	(1.3)	ט או		(0. 27)	(0.047)	-	ט או	ם או	ע או	ND	ט או	""	""	ן ואט	""	""	ND	""
	(平均	IIE/	5.0~	(1.3)	鉱油類等		(0, 21)	(0.047)							 	-	 	-	-		-
管	理基準値		5.0~ 9.0	≦30		1,000	≦ 120	≦ 16	≤2 ⁶⁾	ND	≦0.005	$\leq 0.03^{5)}$	≦0.1	≦0.5	≦ 0.1	≦1	≦ 0.003	≦0.3	≦0.1	≦ 0.2	≦0.02
					≦35 <0.5	/1 0	<0.0F	<0.000	<0.000	<0.0005	<0.0005	/0 001	<0.00F	<0.00	<0.00F	Z0 1	<0.0005	<0.000	<0.0005	< 0.002	< 0.0002
快出!	検出下限値 (ND)				< 0.5	<1.8	< 0.05	< 0.003	< 0.002	√ 0.0005	< v. 0005	<0.001	< 0.005	< 0.02	< 0.005	< 0.1	_ < v. 0005	< 0.002	_ < v. 0005	< 0.002	_ < v. 0002

測定項目						大腸菌				アルキル				六価				トリクロロ	テトラクロロ	シ゛クロロ	四塩化
測定場所	調査	日	рН	COD	油分等	群数	全窒素	全リン	全亜鉛	水銀	総水銀	カト゛ミウム	鉛	207	ひ素	全シアン	PCB	エチレン	エチレン	メタン	炭素
	平成29年度	H29. 5. 25	7.4	5. 2	ΝD	N D	0.70	0.061	0.008	N D	N D	ΝD	N D	ΝD	ΝD	N D	ΝD	ΝD	N D	ΝD	ΝD
		最小	7.5	3. 4	N D	N D	0.44	0.078	0.007	N D	N D	N D	ND	N D	ND	N D	ND	N D	N D	ND	N D
	平成28年度	最大	7.9	6. 4	0.5	460	1.6	0.15	0.034	ND	ND	N D	ND	ΝD	0.008	ND	ND	ND	N D	ND	N D
		平均	7.65	4. 9	0.5	118. 7	0.8025	0. 11325	0.021	N D	ND	ND	ND	ΝD	0.00575	ND	ND	ΝD	N D	ΝD	ND
		最小	7. 5	3. 2	N D	N D	0.68	0.072	0.010	N D	N D	ND	N D	N D	ND	N D	N D	ND	N D	N D	ND
	平成27年度	最大	7. 6	5.0	ND	13	0.96	0.19	0.062	ΝD	N D	ND	ND	ΝD	0.007	ND	N D	ND	N D	ΝD	ND
		平均	7.6	4. 1	ND	6.2	0.83	0.12	0.030	ND	ND	N D	ND	ΝD	0.006	ND	ND	ND	N D	ND	ND
		最小	7.4	3.4	N D	4.5	0.48	0.056	N D	N D	N D	N D	N D	N D	ND	N D	N D	ND	N D	N D	ND
	平成26年度	最大	7. 7	5.9	N D	11	1.00	0.18	0.050	ΝD	N D	N D	ND	N D	ND	ΝD	N D	N D	N D	N D	ND
		平均	7. 6	5. 2	N D	7.8	0.73	0.11	0.016	ΝD	N D	N D	ND	N D	ND	ΝD	N D	ND	N D	ND	N D
		最小	7.3	4.1	N D	N D	0.88	0.049	N D	N D	N D	ND	N D	N D	ND	N D	N D	ND	N D	ND	ND
	平成25年度	最大	7.6	4. 8	N D	N D	1.5	0.88	0.024	ΝD	ND	N D	ND	N D	0.006	N D	N D	ND	N D	ND	ND
		平均	7. 5	4.5	N D	ND	1.1	0.49	0.009	ΝD	N D	N D	ND	ΝD	ND	ΝD	N D	ND	N D	N D	N D
		最小	7. 1	6. 7	N D	N D	1.4	0.066	N D	ΝD	ND	N D	ΝD	ΝD	ΝD	ΝD	ND	ΝD	N D	ND	ND
	平成24年度	最大	7.4	16	ND	ND	5.4	0.17	0.020	ND	N D	ND	ND	ND	ND	N D	ND	ND	N D	ND	ND
		平均	7.3	10	N D	N D	3.1	0.094	0.009	N D	N D	N D	N D	ΝD	N D	N D	ND	ΝD	N D	ΝD	ND
		最小	7.3	2.8	N D	ND	0.58	0.075	0.009	ND	N D	N D	N D	N D	ND	ND	N D	ND	N D	ND	N D
	平成23年度	最大	7. 7	50	0.9	7.8	4.1	0.17	0.047	ND	ND	N D	ND	N D	ND	ND	ND	ND	N D	ND	ND
		平均	7.4	17	0.5	3.4	2.5	0.11	0.023	N D	N D	N D	ND	N D	ND	N D	N D	N D	N D	N D	N D
		最小	7.4	4.3	N D	ND	1.2	0.075	0.009	ND	N D	N D	ND	N D	ND	ND	N D	ND	N D	ND	N D
	平成22年度	最大	7. 5	50	0.9	7.8	7.7	0.15	0.017	ΝD	N D	N D	ND	N D	ND	ΝD	N D	ND	N D	ND	ND
		平均	7.3	22	0.7	3.3	3.6	0.11	0.012	N D	N D	ND	ND	N D	ND	ΝD	N D	ND	N D	N D	ND
		最小	7. 1	8. 1	ΝD	N D	1.4	0.12	N D	ΝD	ND	N D	ND	ΝD	ND	ΝD	N D	ND	N D	ΝD	ND
Tr 本 CT D	平成21年度	最大	7.4	41	N D	7.8	6.1	0.19	0.021	ND	N D	N D	ND	N D	ND	ND	N D	ND	N D	N D	N D
北海岸 St-B		平均	7.3	24	N D	8.4	4.5	0.15	0.008	N D	ND	N D	ND	N D	ND	N D	N D	N D	N D	ND	ND
		最小	7. 1	4. 8	N D	N D	1.5	0.061	0.008	ΝD	ND	N D	ND	N D	ND	N D	N D	N D	N D	ND	ND
	平成20年度	最大	7. 5	21	0.5	49	7.0	0.41	0.028	ND	N D	N D	ND	N D	0.008	ND	N D	ND	N D	ND	N D
		平均	7. 2	16	0.5	15	4.9	0.18	0.018	N D	N D	N D	N D	ΝD	0.006	N D	ND	ND	N D	ND	ND
		最小	6.9	7. 4	N D	ND	3.0	0.059	0.002	N D	ND	N D	N D	N D	ND	N D	N D	ND	N D	ND	N D
	平成19年度	最大	7.6	31	0.6	2.0	11	0. 20	0.040	N D	N D	N D	N D	N D	0.006	N D	N D	N D	N D	ND	ND
		平均	7. 2	20	0.5	2.0	6.7	0.13	0.013	ND	N D	N D	ND	N D	0.005	N D	N D	ND	N D	ND	ND
		最小	6.8	8.9	N D	ND	3.2	0.13	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	ND
	平成18年度	最大	7.4	52	1.4	4.5	23	0.50	0.022	ND	N D	N D	N D	ND	0.007	N D	N D	N D	N D	N D	ND
		平均	7.0	39	0. 7	2.8	11.8	0.23	0.008	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D
	T. #17.5 #	最小	6.8	19	1.3	N D	12	0.15	0.010	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成17年度	最大	7.0	110 70	2.9	2.8	20	0.24	0.020	ND	ND	ND	ND	N D	0.006	ND	ND	ND	N D	ND	ND
}		平均 最小	6. 9 6. 8	61	2. 1 N D	19 N D	15 15	0.19 0.095	0. 015 —	N D N D	N D N D	N D N D	N D N D	N D N D	0. 007 N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D
	平成16年度		7.2	89	4. 1	16000	26	0.095		N D	ND	N D	N D	N D	ND	N D	ND	ND	N D	ND	ND
	□以□□十段	取入 平均	7. 0	75	1.9	4000	19	0.10		ND	ND	N D	N D	N D	ND	N D	ND	ND	ND	ND	ND
		最小	6.8	75	N D	N D	13	0.13	_	N D	N D	N D	ND	ND	ND	N D	ND	N D	N D	ND	ND
	平成15年度	最大	7. 0	92	1.8	45	19	0.23	_	N D	N D	N D	ND	N D	ND	N D	N D	ND	N D	N D	N D
		平均	6.9	80	1. 3	15	16	0.16	_	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成14		6.8~6.9	100~140	2.4~6.0	N D ~ 7.8	15~36	0.21~0.29	_	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成13	年度	6.9~7.1	130~170	2.2~6.3	4.0~4.0	23~41	0.24~0.26	_	ΝD	N D	N D	ΝD	ΝD	ND~0.007	ND	ΝD	ΝD	N D	ΝD	ΝD
	平成12	年度	6.8	170	1.3	2.0	22	0.31	_	ΝD	N D	ΝD	ΝD	ΝD	0.006	ND	ΝD	ΝD	N D	ΝD	ΝD
	事前環境	モニタリンク゛	6.4~	190~	1.4~		23~	0.24~							ND~						
	最小値~	最大値	6.8	240	3. 7	_	32	0.36	_	N D	N D	N D	ND	ND	0.007	N D	ND	ND	N D	ND	ND
	(平均	値)	(6.7)	(210)	(2.4)		(29)	(0.31)							(0.006)						
	理基準値		5.0~ 9.0	≦30	鉱油類等 ≦35	1, 000	≦ 120	≦ 16	≦2 ⁶⁾	N D	≦ 0.005	≤0.03 ⁵⁾	≦ 0. 1	≦ 0.5	≦ 0.1	≦1	≦ 0.003	≦0.3	≦0.1	≦0.2	≦ 0.02
検出下	限値 (ND)		-	< 0.5	< 0.5	<1.8	< 0.05	< 0.003	< 0.002	<0.0005	< 0.0005	<0.001	< 0.005	< 0.02	< 0.005	< 0.1	<0.0005	< 0.002	<0.0005	< 0.002	<0.0002


測定項目		_				大腸菌				アルキル				六価				トリクロロ	テトラクロロ	ジクロロ	四塩化
測定場所	調査	E	рΗ	COD	油分等	群数	全窒素	全リン	全亜鉛	水銀	総水銀	カト゛ミウム	鉛	クロム	ひ素	全シアン	РСВ	エチレン	エチレン	メタン	炭素
	平成29年度	H29. 5. 25	7. 5	2. 6	N D	N D	1.4	0.033	0.004	N D	ΝD	N D	ND	N D	ND	N D	N D	N D	ΝD	ΝD	N D
		最小	7. 3	2. 1	N D	ND	0.8	0.030	N D	N D	N D	N D	ND	N D	ND	N D	N D	N D	N D	N D	ND
	平成28年度	最大	7. 8	3.6	0.6	17	1.5	0.061	0.033	ΝD	ND	ND	ND	N D	ND	N D	ND	ND	N D	ND	ND
		平均	7. 6	3. 0	0. 5	5. 65	1.1	0. 047	0.01375	ΝD	N D	N D	ND	N D	ND	N D	N D	N D	N D	ND	ND
		最小	7. 4	2. 3	N D	ND	0.9	0. 021	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	ND
	平成27年度	最大	7. 8	3. 1	N D	9. 3	2.1	0.048	0.060	N D	N D	ND	ND	N D	ND	N D	N D	N D	N D	ND	ND
		平均	7.6	2. 7	N D	3. 7	1.4	0.037	0.020	N D	N D	ND	ND	N D	N D	N D	ND	ND	N D	ND	ND
		最小	7. 4	2. 1	N D	2. 0	1.1	0. 023	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成26年度	最大	7.6	5. 1	N D	22	3.0	0.046	0.12	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		平均	7.5	3. 6	N D	8. 7	2.0	0.034	0.034	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		最小	7.3	1.1	N D	N D	1.2	0. 029	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成25年度	最大	7.6	3. 7	0.5	7. 8	1.7	0.62	0.040	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		平均 最小	7.5	2. 7	ND	3.5	1.6	0.33	0.015	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D
	平成24年度	_{取小} 最大	7. 8 8. 0	1. 0	N D N D	N D	0.15	0.020	N D 0. 020	N D N D	N D	N D	N D	N D N D	N D	N D	N D N D	N D	N D	N D	N D N D
	平成24年及	取入 平均	7.9	1.5	ND	N D N D	0.39	0.073	0.020	N D	N D N D	N D N D	N D N D	N D	N D N D	N D N D	ND	N D N D	N D N D	N D N D	ND
		<u></u> 最小	7.4	2.9	ND	ND	1.8	0.030	0.013	N D	ND	ND	ND	N D	ND	N D	ND	ND	ND	ND	ND
	平成23年度		7.7	3. 7	ND	2. 0	3.3	0.040	0.000	N D	ND	N D	ND	N D	ND	N D	ND	ND	ND	ND	ND
	1 从20千及	平均	7. 6	3. 2	ND	1.9	2.7	0.000	0.003	N D	ND	N D	N D	N D	ND	N D	ND	N D	ND	ND	N D
		最小	7. 1	2. 2	ND	N D	2. 2	0.020	0.006	N D	N D	ND	ND	N D	ND	N D	ND	N D	N D	ND	ND
	平成22年度	最大	7.5	12.0	ND	2. 0	7.0	0.051	0.000	N D	N D	N D	ND	N D	ND	N D	ND	N D	N D	ND	ND
	1 1%22 - 1%	平均	7.3	5. 0	ND	N D	4.5	0.030	0.015	N D	N D	ND	ND	N D	ND	N D	ND	N D	N D	ND	ND
		最小	7. 3	3.9	N D	ND	4. 1	0.014	N D	N D	N D	N D	N D	N D	ND	N D	ND	N D	N D	N D	N D
	平成21年度	最大	7.3	7. 5	N D	4. 5	9.5	0.056	0.024	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND
北海岸 St-E	1,22.12	平均	7.3	4 9	N D	2. 5	6.1	0.036	0.016	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
		最小	7. 2	4.1	N D	ΝD	8.6	0.020	0.011	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D
	平成20年度	最大	7.3	5.4	N D	ND	13	0.044	0.018	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND
		平均	7. 2	4.9	N D	N D	10	0.031	0.014	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D
		最小	7. 1	4. 9	ΝD	ND	7. 7	0.006	0.004	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ΝD
	平成19年度	最大	7. 3	6. 2	ΝD	2. 0	10	0.057	0.017	ΝD	N D	ΝD	ΝD	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ND
		平均	7. 3	5. 5	N D	1. 9	9.0	0.033	0.008	ΝD	ΝD	ND	ΝD	N D	ΝD	ΝD	ΝD	N D	ΝD	ΝD	ND
		最小	7. 0	5. 2	ND	ND	4. 2	0.019	N D	N D	ND	ND	ND	ND	ND	ND	ND	ND	N D	ND	N D
	平成18年度	最大	7. 2	6.8	ND	2. 0	10	0.10	0.033	ΝD	ND	N D	ND	ND	0.008	ND	N D	N D	N D	ΝD	N D
<u> </u>		平均	7. 1	6. 2	N D	N D	6.3	0.060	0.013	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D
		最小	7. 0	8.8	N D	ND	13	0.056	0.006	ΝD	N D	N D	N D	N D	N D	N D	ND	ND	N D	ND	ND
	平成17年度	最大	7. 2	16.0	0.5	2. 0	24	0.10	0.009	N D	N D	N D	N D	N D	0. 017	N D	N D	N D	N D	N D	N D
		平均	7.1	14.0	0.5	1.9	19	0.075	0.008	N D	N D	N D	N D	N D	0.009	N D	N D	N D	N D	N D	N D
	亚战16年度	最小 是士	7.0	16. 0 25. 0	N D 0. 5	N D 28	21 44	0.064	_	N D N D	N D N D	N D N D	N D 0.005	N D N D	N D 0. 007	N D N D	N D N D	ND	ND	ND	N D
	平成16年度	最大 平均	7. 1 7. 0	25.0	0.5	8. 4	36	0.15	_	N D	N D	N D	0.005	N D	0.007	N D	N D	N D N D	N D N D	N D N D	N D N D
		<u>平均</u>	7. 1	14.0	N D	0. 4 N D	25	0.071		N D	ND	ND	0.005 N D	N D	0.000 N D	ND	ND	ND	ND	ND	ND
	平成15年度	_{取小} 最大	7.2	21.0	ND	4. 5	32	0.17	_	N D	ND	ND	ND	N D	ND	ND	ND	ND	ND	ND	N D
		平均	7.1	18.0	ND	2. 5	29	0.099	_	N D	N D	ND	ND	N D	ND	ND	ND	ND	N D	N D	ND
	平成14		7.0~7.0	15~29	N D	N D	19~46	0.10~0.28	_	N D	N D	ND	N D	N D	ND~0.005	N D	N D	N D	N D	N D	N D
	平成13		7.2~7.2	1.3~21	ND~0.5	N D ~1.8	14~40	0.13~0.20	_	N D	N D	N D	ND	N D	ND	N D	N D	N D	N D	N D	ND
	平成12	年度	6. 9	230	3. 5	ΝD	170	0.84	_	ΝD	ΝD	N D	ΝD	N D	0.049	ΝD	N D	ΝD	N D	ΝD	N D
[事前環境:	Eニタリンク゛	6.6~	140~	1.6~		98~	0.33~							0.019~						
	最小値~	最大値	7. 1	420	9. 2	_	280	0.90	_	N D	N D	ND	ND	ND	0.06	N D	ND	ND	N D	ND	ND
	(平均	値)	(6.9) 5.0~	(250)	(4. 4)		(190)	(0.70)							(0.043)						
管	管理基準値				鉱油類等 ≦35	1, 000	≦ 120	≦ 16	≦2 ⁶⁾	N D	≦ 0.005	≤0.03 ⁵⁾	≦ 0. 1	≦ 0.5	≦ 0.1	≦1	≦ 0.003	≦ 0.3	≦ 0.1	≦0.2	≦ 0.02
検出下	限値 (ND)		_	< 0.5	< 0.5	<1.8	< 0.05	< 0.003	< 0.002	<0.0005	< 0.0005	<0.001	< 0.005	< 0.02	< 0.005	< 0.1	<0.0005	< 0.002	<0.0005	< 0.002	<0.0002

測定項目	===		1, 2-	1, 1-	シス-1, 2-	1, 1, 1-	1, 1, 2-	1, 3-	. * * .	-1-1		チオベン		有機	硝酸性窒素	1, 4–	- / -		-,,	塩化物	g*
測定場所	調査	CH.	シ゛クロロ エタン	シ゛クロロ エチレン	シ゛クロロ エチレン	トリクロロ エタン	トリクロロ エタン	シ゛クロロ フ゜ロヘ゜ン	ベンゼン	チウラム	シマシ゛ン	カルフ゛	セレン	リン	及び亜硝酸 性窒素	ジオキサン	ニッケル	モリブデン	アンチモン	イオン	シン類 ²⁾
MAC-3011	平成29年度	H29. 5. 25	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	ND	ND	0.15	N D	_	 	_	17, 200	_
	17,020 172	最小	N D	N D	ND	ND	N D	ND	N D	N D	N D	N D	ND	ND	0.08	N D	ΝD	ΝD	ΝD	17, 500	1.6
	平成28年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	0.008	ND	0.49	N D	ND	0.008	N D	18, 300	2. 2
		平均	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	0.006	ND	0.28	ΝD	ΝD	0.008	N D	18,000	1.9
		最小	ΝD	ΝD	ΝD	ΝD	ND	ΝD	ΝD	N D	ΝD	ΝD	N D	ΝD	0.07	ΝD	ΝD	ND	N D	17, 500	0.86
	平成27年度	最大	ND	ND	ND	ND	ΝD	ND	ΝD	N D	ΝD	ND	0.007	ND	0.22	ΝD	ND	0.011	0.004	18, 400	9.8
		平均	ND	ND	ΝD	N D	ND	N D	N D	N D	ΝD	N D	0.006	ND	0.14	N D	ND	0.009	0.003	17, 800	5.3
		最小	ND	N D	ND	N D	N D	ND	N D	N D	N D	ND	N D	ND	0.08	N D	N D	0.013	N D	17, 500	3.1
	平成26年度	最大	N D	N D	N D	N D	ΝD	N D	N D	N D	N D	N D	N D	ΝD	0.31	N D	N D	0.025	0.002	18, 600	4. 1
		平均	N D	ND	ND	N D	N D	N D	N D	N D	N D	ND	N D	ND	0.19	N D	ND	0.019	0.002	18, 100	3.6
		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	0.15	N D	N D	0.016	N D	17, 100	1.5
	平成25年度	最大	N D	ND	N D	N D	ΝD	N D	N D	N D	N D	ND	ND	ND	0.32	ΝD	N D	0.049	N D	18, 700	2.3
		平均	N D	ND	ND	ND	ND	N D	N D	N D	ND	ND	ND	ND	0.23	ND	N D	0.033	N D	18, 100	1.9
	T-*045-	最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.06	N D	N D	0.007	N D	17, 500	1.0
	平成24年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.005	N D	0.27	N D	N D	0.011	N D	18, 000	1.4
		平均 最小	N D	N D	N D	N D	ND	N D	N D	N D	N D	ND	N D	N D	0.15	N D	N D	0.009	N D	17, 700 16, 100	1. 2 0. 43
	平成23年度	<u></u> 最小 最大	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.05	N D N D	N D N D	0.010	N D 0.003	18, 100	0. 43
	十成23千良	平均	ND	ND	N D	ND	N D	ND	N D	N D	ND	ND	ND	ND	0.31	ND	ND	0.013	0.003	17, 300	0. 32
		最小	ND	ND	N D	ND	ND	ND	N D	N D	N D	ND	ND	ND	0. 21	ND	ND	0.008	N D	15, 400	1.7
	平成22年度	最大	ND	ND	ND	ND	N D	ND	N D	ND	N D	ND	ND	ND	0.02	ND	ND	0.010	0.002	18, 900	1.8
	1 10000	平均	ND	ND	ND	ND	N D	ND	N D	N D	N D	ND	ND	ND	0.13	ND	N D	0.009	0.002	17, 500	1.8
		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.04		N D	N D	0.002	16, 500	0.49
	平成21年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.38	_	N D	N D	0.002	19, 400	0.50
西海岸St-A		平均	N D	N D	N D	N D	N D	N D	N D	N D	ΝD	ΝD	ND	ΝD	0.17	_	N D	ND	0.002	18, 500	0.50
		最小	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	ND	ΝD	0.05	_	ΝD	ND	N D	18, 800	0.12
	平成20年度	最大	ΝD	ND	ND	ΝD	ND	ΝD	ΝD	N D	ΝD	ND	N D	ΝD	0.19	_	ΝD	0.009	N D	19, 600	1.2
		平均	ND	N D	ND	ND	ΝD	ND	ΝD	N D	ΝD	N D	N D	ΝD	0.11	_	ΝD	0.008	N D	19, 200	0.66
		最小	N D	N D	ΝD	ΝD	ΝD	N D	ΝD	N D	ΝD	ND	ND	ΝD	0.08	_	N D	ND	0.001	18, 500	2.7
	平成19年度	最大	ND	ND	ND	ND	ND	N D	N D	N D	ΝD	ND	ND	ΝD	0.34	_	ND	ND	0.003	18, 900	3.8
		平均	N D	ND	ND	N D	ΝD	N D	N D	N D	N D	ND	ND	ND	0.19	_	N D	ND	0.002	18, 700	3.3
	T #10 F =	最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.07	_	N D	N D	0.001	16, 700	1.1
	平成18年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.39		N D	0.009	0.001	18, 700	2.4
		平均 最小	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.18		N D N D	0.005	0.001 N D	18, 000 17, 300	1.8
	平成17年度	最大	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.36		ND	0.007	0.005	18, 700	7.6
	17212	平均	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.24	_	ND	0.011	0.003	18, 300	4.6
		最小	ND	ΝD	ΝD	ΝD	N D	ΝD	N D	N D	ΝD	ND	ND	ΝD	0.12	_	ΝD	ND	0.001	16,000	1.9
	平成16年度	最大	ND	ΝD	ND	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	0.39		ΝD	0.008	0.015	17, 700	5.8
		平均	N D	N D	ND	N D	ND	N D	N D	N D	N D	N D	N D	N D	0. 22	_	N D	0.008	0.008	16, 700	3.9
		最小	ND	N D	ND	ΝD	ΝD	N D	ΝD	N D	ΝD	N D	N D	ΝD	0.03	_	N D	ND	N D	14, 100	2.6
	平成15年度	最大	ΝD	ND	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ND	ND	ΝD	0.36	_	N D	0.008	0.004	18, 800	6.6
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.19	_	N D	0.007	0.001	16, 700	4.8
	平成14		N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	_	_	N D	N D	ND	18,000~19,200	5.3~9.6
1	平成13		N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D			N D	N D	0.001~0.001	17, 500~18, 700	3.6~15
1	平成1		ND	ND	ND	ND	ND	ND	N D	ND	ΝD	ND	ND	ND	_		ND	0.008	0.001	17, 900	9.4
	事前環境		N. 5	71.5	,, ,		N 5		, , , ,			N. C.	N. 5			_	N 5	ND~	ND~	17, 100~	27
1	最小値~		ND	ND	ND	ND	ΝD	ND	ΝD	ND	ΝD	ND	ND	_	_	_	ND	0.011 (0.009)	0.001 (0.001)	18, 600 (17, 900)	37
管	(平均値) 管理基準値			≦1 ⁴⁾	≦ 0.4	≦ 3	≦ 0.06	≦ 0.02	≦ 0.1	≦ 0.06	≦ 0.03	≦ 0.2	≦ 0.1	≦ 1	≦ 100	≦ 0.5	_	(0.009) —	(0.001)	— (17, 900) —	≦ 10
+ <u>}</u> - ⊔ -		< 0.0004	< 0.002	< 0.004	<0.0005	<0.0006	<0.0002	< 0.001		<0.0003	< 0.002	< 0.005	< 0.1	< 0.01	<0.005	< 0.05	< 0.007	< 0.001	_	_	
快出	F限値(ND)		√ 0.0004	₹ 0.002	√ ∪. ∪∪4	√ 0.0005	√ 0.0006	√ 0.0002	√ ∪. ∪∪1	< 0.0006 ³⁾	~ 0.0003	<u> </u>	< ∪. ∪∪5	√ 0. I	↓ < ∪. ∪ I	√∪. ∪∪ 5	< 0.05	_ < v. 00 /	<u> </u>		

測定項目			1, 2-	1, 1-	シス-1, 2-	1, 1, 1–	1, 1, 2-	1, 3-				チオヘ゛ン		有機	硝酸性窒素	1, 4-				塩化物	ダイオキ
	調査	日	シ゛クロロ	ジクロロ	シ゛クロロ	トリクロロ	トリクロロ	シ゛クロロ	ベンゼン	チウラム	シマシ゛ン	カルブ	セレン	リン	及び亜硝酸	」, 1 シ゛オキサン	ニッケル	モリフ゛テ゛ン	アンチモン	温に物	シン類 ²⁾
測定場所		1100 5 05	エタン	エチレン	エチレン	エタン	エタン	プロペン							性窒素					10.000	
	平成29年度	H29. 5. 25	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D				16, 300	0.48
	平成28年度	最小 最大	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D 0.006	N D N D	0.01	N D N D	N D N D	N D N D	N D N D	15, 500 17, 300	1.2
	十成20千及	平均	N D	N D	N D	N D	N D	N D	N D	N D	ND	ND	0.005	ND	0.01	N D	N D	ND	ND	16, 400	0.84
		最小	ND	ND	ND	N D	ND	ND	ND	N D	ND	ND	N D	ND	N D	ND	N D	ND	ND	15, 700	0.43
	平成27年度	最大	ND	N D	ND	N D	N D	N D	ND	N D	N D	ND	N D	N D	0.05	N D	N D	0.027	N D	17, 500	0.58
	1 /2/27 1 /2	平均	N D	ND	N D	N D	N D	ND	N D	ND	N D	N D	N D	N D	0.02	ND	N D	0.022	N D	16, 600	0.51
		最小	N D	ND	N D	ND	ND	ND	N D	ND	N D	N D	N D	N D	N D	ND	N D	N D	N D	15, 700	0.43
	平成26年度	最大	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.05	N D	N D	0.027	N D	17. 500	0.58
		平均	ΝD	N D	ND	ΝD	N D	ΝD	ΝD	ΝD	ND	ND	ΝD	ΝD	0.02	ND	ΝD	0.022	ΝD	16,600	0.51
		最小	ΝD	N D	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ND	ND	ΝD	ΝD	ND	ΝD	ΝD	ND	ΝD	14, 200	0.34
	平成25年度	最大	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ΝD	N D	ND	ΝD	ΝD	0.01	ΝD	ΝD	ND	ΝD	17, 800	0.53
		平均	ΝD	N D	ND	ΝD	ΝD	ND	ΝD	ΝD	ND	ND	N D	ΝD	ND	ND	ΝD	ND	ΝD	16, 700	0.44
		最小	ΝD	ND	ND	ΝD	ND	ND	ΝD	ND	N D	ND	ND	N D	ND	ND	ND	ND	ND	12, 800	0.19
	平成24年度	最大	ΝD	ND	N D	ΝD	ND	ND	ΝD	ND	N D	ND	ND	N D	0.04	0.015	ND	0.008	ΝD	17, 200	0.34
		平均	ND	N D	ND	N D	ND	ND	ND	N D	ND	ND	ND	ND	0.02	0.010	ND	0.007	ND	15, 500	0.27
		最小	ΝD	ND	ND	ΝD	N D	ND	ND	ND	ND	ND	ND	N D	ND	ND	N D	N D	ND	12, 800	0.19
	平成24年度	最大	N D	N D	ND	ΝD	N D	N D	ND	ΝD	ND	ND	ND	ND	0.04	0.015	N D	0.008	ND	17, 200	0.34
		平均	ΝD	N D	ND	N D	N D	ND	ND	N D	ND	ND	N D	ND	0.02	0.010	ND	0.007	ND	15, 500	0. 27
		最小	ΝD	ND	ND	N D	ND	ND	ΝD	ΝD	ND	ND	ND	ND	ND	ND	ND	ND	ND	5, 070	0.16
	平成23年度	最大	N D	N D	ND	N D	N D	ND	ND	N D	ND	ND	ND	N D	ND	0.020	N D	0.012	0. 002	17, 500	0.54
		平均	N D	N D	ND	N D	ND	ND	ND	ND	ND	ND	ND	N D	ND	0.011	N D	0.010	0. 001	13, 000	0.35
		最小	N D	N D	ND	N D	N D	ND	ND	ND	ND	ND	ND	ND	0.01	0.005	N D	ND	ND	2, 800	0.66
	平成22年度	最大	N D	N D	N D	N D	ND	ND	N D	ND	ND	ND	N D	N D	0.01	0.035	N D	N D	ND	17, 500	1.4
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.01	0.019	N D	N D	N D	12, 900	1.0
北海岸 St-B		最小	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	_	N D	N D	N D	8,000	0.32
	平成21年度	最大 平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	0.01	_	N D	N D	N D	16, 800	0.47
		最小	N D N D	N D N D	ND	N D N D	N D N D	N D N D	ND	ND	N D N D	N D N D	N D N D	N D N D	0.01 N D	_	N D N D	N D N D	N D N D	12, 200 8, 400	0.40
	平成20年度	<u>取小</u> 最大	N D	N D	N D	N D	N D	N D	N D N D	N D N D	N D	ND	N D	N D	0.01	_	N D	0.008	ND	17. 100	0. 23
	十成20千度	平均	N D	ND	N D N D	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01		ND	0.008	ND	11, 900	0.24
		最小	ND	ND	ND	N D	N D	ND	ND	ND	ND	ND	ND	N D	N D	_	N D	N D	ND	8,000	0.47
	平成19年度	最大	ND	N D	ND	N D	N D	N D	ND	N D	ND	ND	ND	N D	0.02	_	N D	ND	N D	16, 600	0.93
	1 /2017 1 /2	平均	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	0.01	_	N D	N D	N D	11. 900	0.70
		最小	ΝD	N D	ND	N D	ΝD	ΝD	ΝD	ND	ND	ND	ND	N D	ND	_	N D	ND	0	6,000	1.2
	平成18年度	最大	ΝD	N D	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	ND	ΝD	ΝD	0.06	_	ΝD	ND	0. 001	15, 400	2.8
		平均	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ND	ΝD	ND	ΝD	ΝD	0.02	_	ΝD	ND	0. 001	9, 880	2.0
		最小	ΝD	ΝD	ND	ΝD	N D	ND	ΝD	ND	ND	ND	ND	ΝD	ND	_	ΝD	ND	ΝD	4, 600	0.57
	平成17年度	最大	ΝD	N D	ND	N D	N D	N D	ND	N D	ND	ND	ND	ND	ND		N D	ND	0.005	11,500	1.3
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	_	N D	N D	0.003	8, 680	0.94
	亚出16年中	最小	N D	N D	ND	ND	N D	N D	ND	ND	N D	N D	N D	N D	N D		N D	N D	N D	5, 790	0. 27
	平成16年度	最大 平均	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0.05	_	N D N D	0.010	0.011	9, 520 7, 500	1.8
		最小	N D	N D	ND	N D	N D	ND	ND	N D	ND	ND	ND	ND	0.03 N D		N D	N D	0.006 N D	3, 920	0.19
	平成15年度	最大	ND	ND	ND	ND	N D	N D	ND	N D	ND	ND	ND	N D	ND	_	N D	ND	0.001	12, 000	1.9
		平均	N D	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	N D	N D	_	N D	N D	0.001	7, 400	0.96
	平成14	平成14年度		ΝD	ND	N D	ΝD	ND	ND	ND	ND	ND	ND	N D	_	_	N D	N D	N D	6,300~9,300	0.21~1.0
	平成13		ΝD	N D	ΝD	ΝD	ΝD	ΝD	ND~0.002	ΝD	ND	ND	N D	ΝD	_	_	ΝD	ND~0.012	ΝD	6, 800~11, 100	0.56~0.9
	平成12	- 1 2	ΝD	ND	ND	ΝD	ND	ND	ΝD	ND	ND	ND	ND	ND		_	ND	ND	ND	11, 100	0.43
	事前環境								ND~									ND~		8,700~	
	最小値~		ND	N D	ND	N D	N D	N D	0.001	ND	ND	ND	ND	_	-	_	N D	0.041	ND	10,600	0. 25
	(平均	1値)							(0.001)									(0.016)		(9, 800)	
管	理基準値		≦0.04	≦1 ^{4⟩}	≦ 0.4	≦ 3	≦ 0.06	≦ 0.02	≦ 0.1	≦ 0.06	≦0.03	≦ 0.2	≦ 0.1	≦ 1	≦ 100	≦ 0.5	_	-	_	-	≦ 10
検出コ	下限値(ND)		< 0.0004	<0.002	< 0.004	<0.0005	<0.0006	<0.0002	< 0.001	< 0 00063)	<0.0003	< 0.002	< 0.005	< 0.1	< 0.01	<0.005	< 0.05	< 0.007	< 0.001	_	_
, , page 1																					

測定項目			1, 2-	1, 1-	シス-1, 2-	1, 1, 1-	1, 1, 2-	1, 3-							硝酸性窒素						
测定项目	調査	EB	1, 2 ジ クロロ	」,, I シ* クロロ	シ゛クロロ	1. 1. 1 トリクロロ	1, 1, 2 トリクロロ	ジクロロ	ベンゼン	チウラム	シマシ゛ン	チオヘン	セレン	有機	の 及び亜硝酸	1, 4-	ニッケル	モリフ・テ・ン	アンチモン	塩化物	ダイオキ
測定場所	107.2		エタン	エチレン	エチレン	エタン	エタン	プロペン	. , , ,	///2	, , , ,	カルフ゛		リン	性窒素	シ゛オキサン	-////	''' '	,,,,,,	イオン	シン類 ²⁾
	平成29年度	H29. 5. 25	N D	N D	N D	N D	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ND	0.44	ΝD	_	 	_	17, 100	_
		最小	N D	ND	ND	ND	ND	ND	N D	ND	N D	ND	N D	ΝD	0. 25	ND	ΝD	ND	ΝD	16, 200	0.14
	平成28年度	最大	N D	ND	ND	ΝD	N D	ΝD	ΝD	ΝD	ND	ND	0.007	ND	0.72	0.005	ΝD	ND	0.002	16, 800	0. 21
		平均	N D	ND	ND	N D	N D	ND	ΝD	ΝD	ND	ND	0.006	ND	0.50	0.005	ΝD	ND	0.002	16, 500	0.18
		最小	ND	ND	ND	ΝD	ΝD	ND	ND	ND	ND	ΝD	ND	ΝD	0.09	N D	ND	ND	ND	15, 500	0.14
	平成27年度	最大	N D	ΝD	ΝD	ΝD	ΝD	ND	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	0, 62	0.006	ΝD	0.007	0.001	17, 000	0.43
		平均	ΝD	ΝD	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	ΝD	ΝD	ΝD	0.35	0.005	ΝD	0.007	0.001	16, 300	0. 29
		最小	N D	ΝD	ΝD	ΝD	ΝD	ΝD	N D	ΝD	ΝD	ΝD	N D	ΝD	0. 21	N D	ΝD	ΝD	N D	16, 100	0.18
	平成26年度	最大	ΝD	ND	ND	ΝD	ΝD	ΝD	ΝD	ND	ND	ND	ND	ΝD	0.79	0.006	ND	0.021	ND	17, 000	0.38
		平均	ΝD	ND	ND	ΝD	ND	ND	ND	ND	ND	ND	ND	ND	0.43	0.006	ND	0.018	ND	16, 500	0. 28
		最小	ΝD	ND	ND	ΝD	ΝD	ND	ΝD	ND	ΝD	ND	ND	ΝD	0.13	ΝD	ND	0.011	ΝD	16,000	0.16
	平成25年度	最大	ND	ND	ΝD	ΝD	ND	ND	ND	ND	ΝD	ND	ND	ΝD	0.41	ΝD	ND	0.050	ND	17, 400	0.39
		平均	ΝD	ΝD	ΝD	ΝD	ΝD	ND	ND	ΝD	ΝD	ΝD	ND	ΝD	0. 27	ΝD	ΝD	0.031	N D	17, 000	0. 28
		最小	N D	ND	ND	N D	ND	ND	ND	ND	ND	ND	ΝD	N D	0. 29	N D	ND	ND	ND	16, 200	0.14
	平成24年度	最大	ΝD	ND	ND	ΝD	ΝD	ΝD	ND	ND	ΝD	ND	ND	ΝD	0.64	N D	ΝD	0.008	N D	17, 300	0.17
		平均	N D	ND	ND	N D	ND	ND	ΝD	ND	ND	ND	ΝD	N D	0.42	N D	ND	0.007	N D	16,600	0.16
		最小	ND	ND	ND	ΝD	ΝD	ND	ND	ND	ND	ND	ND	ND	0.11	ΝD	ND	ND	N D	15, 400	0.069
	平成23年度	最大	ND	ND	ND	ΝD	ΝD	ND	ND	ΝD	ND	ND	ΝD	ND	0.39	0.008	ND	0.016	0.001	16, 300	0.19
		平均	ND	ND	ND	ΝD	ND	ND	ND	ND	ND	ND	ND	ND	0.20	0.007	ND	0.010	0.001	15, 900	0.13
		最小	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	0.006	ND	ND	ND	14, 700	0.62
	平成22年度	最大	ΝD	N D	ND	ΝD	ΝD	ND	ΝD	ΝD	ND	ND	ΝD	ND	0.48	0.014	ND	0.007	N D	17, 500	0.75
		平均	ND	ND	ND	ΝD	ΝD	ND	ND	ND	ND	ND	ND	ND	0. 27	0.009	ND	0.007	ND	16, 600	0.69
	平成21年度	最小	ND	ND	ND	ΝD	ΝD	ND	ΝD	ND	ΝD	ND	ND	ΝD	0.04	_	ΝD	ND	ΝD	16, 500	0.092
W. 15-14 O. F		最大	ND	ND	ND	ΝD	ΝD	ND	ND	ND	ND	ND	ND	ND	0.24	_	ND	ND	0.002	17, 800	0.32
北海岸 St-E		平均	N D	ND	ND	Z D	ND	ND	D N	D N	N D	ND	ND	ND	0.13	_	D N	N D	0.002	16, 900	0. 21
	平成20年度	最小	ΝD	ND	ND	Z D	ND	ND	D	D Z	ND	ND	ND	ND	0.05	_	D N	ND	ND	16, 400	0.077
		最大	ND	ND	ND	Z D	ND	D D	D	D Z	ND	ND	0.007	ND	0.78	_	D N	ΝD	0.001	17, 300	0.083
		平均	N D	ND	ND	ΝD	ND	ND	ND	D N	ND	ND	0.006	ND	0.30	_	ND	N D	0.001	16, 800	0.080
		最小	N D	ND	ND	N D	ND	ND	ND	ND	ND	ND	ND	ND	0.03	_	ND	N D	N D	16, 700	0.37
	平成19年度	最大	N D	N D	ND	N D	N D	ND	N D	N D	N D	ND	N D	ND	0.24	_	ND	ND	0.001	16, 800	0.78
		平均	N D	ND	ND	N D	N D	ΝD	N D	N D	ND	N D	ΝD	ND	0.10	_	ΝD	ND	0.001	16, 800	0.58
		最小	N D	N D	ND	N D	N D	ND	ND	ND	ND	ND	ND	ND	ND	_	ND	N D	N D	14, 700	1.9
	平成18年度	最大	N D	ND	ND	N D	N D	ND	ND	ND	ND	ND	ND	ND	0.44		ND	N D	N D	17, 400	2.4
		平均	N D	N D	ND	N D	N D	ND	N D	ND	N D	ND	ND	N D	0.13	_	ND	ND	N D	16, 125	2.2
		最小	N D	N D	ND	N D	ND	ND	N D	ND	N D	ND	ND	ND	N D		ND	ND	N D	14, 600	1.6
	平成17年度	最大	N D	N D	ND	N D	ND	N D	N D	N D	N D	N D	N D	N D	0.15		N D	0.007	N D	15, 500	2.5
		平均	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	0.09		ND	0.007	N D	15, 200	1.0
	平成16年度	最小 最大	N D N D	N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	N D N D	0. 25		N D N D	N D	N D 0.008	13, 600 15, 100	0. 24 1. 2
	一八10千尺	<u>取入</u> 平均	N D	ND	ND	N D	ND	N D	N D	N D	N D	N D	N D	N D	0. 25		N D	ND	0.008	14, 500	0.72
		最小	ND	ND	ND	N D	ND	N D	ND	N D	ND	ND	ND	ND	0.13 N D		ND	ND	0.003 N D	14, 300	0.72
	平成15年度	最大	ND	ND	ND	N D	ND	ND	ND	N D	ND	N D	ND	ND	0.35		ND	ND	0.001	17, 400	1.0
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	平均	N D	ND	ND	N D	N D	ND	ND	ND	N D	ND	ND	ND	0.10	_	ND	ND	0.001	15, 725	0.88
	平成14		ND	ND	ND	N D	ND	ND	ND	ND	N D	N D	ND	ND	-	_	ND	ND	N D	15, 800~18, 300	0.39~0.88
	平成1		N D	N D	ND	N D	ND	ND	N D	ND	N D	ND	N D	N D	_	_	ND	ND	N D	17, 200~17, 200	0.48~1.7
	平成12	2年度	N D	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	_	_	ND	ND	ND	7, 900	1.1
	事前環境	モニタリンク゜	ND~						0.004~											6,300~	
	最小値~	最大値	0.010	ND	ND	ΝD	ΝD	ND	0.13	ND	ND	ND	ND	_	_	_	ND	ND	ND	12, 800	0.096
	(平均		(0.0028)	1					(0.037)										1	(8, 700)	1
管	理基準値		≦0.04	≦1 ⁴⁾	≦ 0.4	≦ 3	≦0.06	≦ 0.02	≦ 0.1	≦ 0.06	≦0.03	≦ 0.2	≦ 0.1	≦ 1	≦ 100	≦ 0.5	_	_	_	_	≦ 10
松山工	下限値 (ND)		< 0.0004	< 0.002	< 0.004	< 0.0005	<0.000e	<0.0002	< 0.001		< 0.0003	< 0.002	< 0.005	< 0.1	< 0.01	<0.005	< 0.05	< 0.007	< 0.001	_	_
快山 I 1) 事前環境モニタリン/								< 0.00063)					<u> </u>	\U. UU3	▼ 0.05	▼ 0.007					

¹⁾ 事前環境モニタリング: H11. 1. 21、H11. 6. 16、H11. 9. 9、H11. 11. 29実施 平成12年度: H12. 7. 27実施 平成13年度: H13. 7. 18、H14. 2. 1実施 平成14年度: H14. 7. 23、H15. 2. 6実施 平成15年度: H15. 5. 15、H15. 7. 14、H15. 10. 24、H16. 2. 10実施 平成16年度: H16. 6. 1、H16. 7. 29、H16. 11. 2、H17. 1. 14実施 平成17年度: H17. 5. 23、H17. 7. 21、H17. 11. 7、H18. 1. 18実施

緊急時等の報告(正式評価)

『緊急時等の評価(分類)基準と関係者へのレベル表示』(平成18年3月29日第8回管理委員会及び平成22年3月27日第21回管理委員会審議済)の運用方針に従い、第45回管理委員会(平成29年4月16日開催)からこれまでに関係者に通報した8件について、緊急時等への対応が終了しましたので正式評価(分類)を実施し、次のとおり報告します。

なお、今回の報告する8件については暫定評価と同じ評価結果でした。

①高度排水処理施設の一時停止について (停電)	評価レベル
<異常時緊急時等の通報内容>	<暫定評価(分類)>
昨日(4月17日)、20時33分頃から20時36分頃までの間、豊島で停電があり、高度	人身への影響 基準の逸脱等 事業進捗への影響
排水処理施設が一時停止しました。	1. 問題なし 1. 問題なし 1. 問題なし
復電後、施設を点検し、正常に稼動していることを確認しました。	
また、この影響で、情報表示システムの自動測定情報が正常に更新されていません。現在復	
<修復作業の内容>	<正式評価(分類)>
復電後、施設を点検し、正常に稼動していることを確認しました。	人身への影響 基準の逸脱等 事業進捗への影響
<処理事業への影響>	1. 問題なし 1. 問題なし 1. 問題なし
このことによる中間処理施設の停止はありません。	

②1号及び2号溶融炉のキープ運転について (スラグ分配コンベア故障)	評価レベル
<異常時緊急時等の通報内容>	<暫定評価(分類)>
平成29年4月23日9時頃にスラグ分配コンベアが故障したことにより、スラグの破砕を	人身への影響 基準の逸脱等 事業進捗への影響
止めた状態で処理を行っていましたが、破砕前のスラグを貯めておくピットに余裕がなくなっ	1. 問題なし 1. 問題なし 2. 軽度
たため、本日(4月24日)6時からキープ運転(廃棄物の投入を停止し、1000℃で温度	
維持)を行っています。	
修復作業は本日(4月24日)8時30分頃から行っており、午前中に終わる見込みです。	
修復作業が終わり次第、昇温を行い、処理を再開します。	
<修復作業の内容>	<正式評価(分類)>
プーリーが損傷していたので交換して試運転後に復旧しました。	人身への影響 基準の逸脱等 事業進捗への影響
<処理事業への影響>	1. 問題なし 1. 問題なし 2. 軽度
このことによる処理の停止は平成29年4月24日8時頃から16時頃までのおよそ8時間	
でした。	

③2号溶融炉のキープ運転について	評価レベル
<異常時緊急時等の通報内容>	<暫定評価(分類)>
	人身への影響 基準の逸脱等 事業進捗への影響
昨日(5月9日)午後11時30分頃、2号溶融炉のバグフィルターダスト排出装置が故障	1. 問題なし 1. 問題なし 2. 軽度
したことから、本日(5月10日)午前2時30分頃から、キープ運転(廃棄物の投入停止し、	
1000℃で温度維持)に移行し、排出装置の交換作業を行っています。 (第2報)	
(現2報) 2 号溶融炉については、バグフィルターダスト排出装置が故障したため、キープ運転(廃棄	
物の投入停止し、1000℃で温度維持)を行い、排出装置の交換作業を実施していましたが、	
作業が完了したので、施設の安全点検を行った後、本日(5月10日)11時30分頃から昇	
温を開始しました。なお、処理再開は16時頃の予定です。	
	<正式評価(分類)>
サーマルリレー取付部の焼損による欠相が発生していたので、取付部が焼損したサーマルリ	人身への影響 基準の逸脱等 事業進捗への影響
レーと、サーマルリレーが取り付けられていた電磁接触器を交換して試運転を行った後、復旧	1. 問題なし 1. 問題なし 2. 軽度
しました。	

<処理事業への影響>

までのおよそ2日と15時間でした。

このことによる 2 号炉の処理の停止は平成 2 9年 5 月 1 0 日 4 時頃から 1 5 時頃までのおよそ 1 1 時間でした。

④1号溶融炉のキープ運転について(投入コンベア故障)		評価レベル	
<異常時緊急時等の通報内容>	<暫定評価(分	類) >	
(第1報)	人身への影響	基準の逸脱等	事業進捗への影響
平成29年5月14日午前9時頃、1号溶融炉の投入コンベアが故障したことから、本日(5	1. 問題なし	1. 問題なし	2. 軽度
月14日)午前9時30分頃から、キープ運転(廃棄物の投入停止し、1000℃で温度維持)		I	
に移行し、修復作業を行っています。			
(第2報)			
5月14日午前9時頃、1号溶融炉の投入コンベアが故障したことから、午前9時30分頃			
から、キープ運転(廃棄物の投入停止し、1000℃で温度維持)に移行しておりましたが、			
作業が完了したので、施設の安全点検を行った後、昨日(5月16日)22時頃から昇温を開			
始し、本日(5月17日)2時頃に処理再開しました。			
<修復作業の内容>	<正式評価(分	類)>	
エプロンパンが変形し、エプロンパン同士が干渉して過負荷となっていたので、変形したエ	人身への影響	基準の逸脱等	事業進捗への影響
プロンパンと取付ボルトの交換及び弛み止めのために取付ボルトとナットの溶接を実施して復	1. 問題なし	1. 問題なし	2. 軽度
旧しました。			
<処理事業への影響>			
このことによる1号炉の処理の停止は平成29年5月14日11時頃から5月17日2時頃			

⑤1号溶融炉の塩化水素濃度の表示値が要監視レベルを超えた件について(計測器故障)	評価レベル
<異常時緊急時等の通報内容>	<暫定評価(分類)>
平成29年5月25日午前9時頃、1号溶融炉の塩化水素濃度の表示値が要監視レベル(中	人身への影響 基準の逸脱等 事業進捗への影響
間処理施設の運転状況の監視を強化しながら本来の性能を発揮させる改善対策を実施するレベ	1. 問題なし 1. 問題なし 1. 問題なし
ル)を超えました。	
この原因は、塩化水素濃度計の動作不良によるもので、点検の上復旧しました。異常値につ	
いては後日修正致します。	
<修復作業の内容>	<正式評価(分類)>
試料流量計のフロート玉が流量計ガラス管内面に付着し、正確な流量が測れていなかったた	人身への影響 基準の逸脱等 事業進捗への影響
め、異常値となっていたことから、分解清掃を行い復旧しました。	1. 問題なし 1. 問題なし 1. 問題なし
<処理事業への影響>	
このことによる処理の停止はありません。	

⑥溶融炉の硫黄酸化物濃度が要監視レベルを超えた件について(1号炉、2号炉)		評価レベル					
<異常時緊急時等の通報内容>	<	<暫定評価(分類)>					
(第1報)		人身への影響	基準の逸脱等	事業進捗への影響			
平成29年6月27日、ピット固着物の処理を行っているところですが、9時頃、1号溶融		1. 問題なし	2. 軽度	1. 問題なし			
炉において、硫黄酸化物濃度が要監視レベル(中間処理施設の運転状況の監視を強化しながら	-		I				
本来の性能を発揮させる改善対策を実施するレベル)を超えました。							
この原因については、投入された廃棄物等に、硫黄分が多く含まれていたことによるものと							
思われます。							
(第2報)							
1号溶融炉に続き、本日(6月27日)11時頃、2号溶融炉においても、硫黄酸化物濃度							
が要監視レベル(中間処理施設の運転状況の監視を強化しながら本来の性能を発揮させる改善							
対策を実施するレベル)を超えました。							
この原因については、1号溶融炉と同様に投入された廃棄物等に、硫黄分が多く含まれていた							
ことによるものと思われます。							

<修復作業の内容>

燃焼空気、バーナー油量を調節し、処理量を落とすと共にガス冷却塔出口温度を下げて対応しました。消石灰圧送ラインを点検し、正常なことを確認して消石灰吹き込み及び苛性ソーダの噴霧を最大にしました。

<正式評価(分類)>

人身への影響	基準の逸脱等	事業進捗への影響
1. 問題なし	2. 軽度	1. 問題なし

評価レベル

基準の逸脱等

2. 軽度

事業進捗への影響

1. 問題なし

<処理事業への影響>

このことによる処理の停止はありません。

⑦2 号溶融炉の硫黄酸化物濃度が要監視レベルを超えた件について

<異常時緊急時等の通報内容>

平成29年6月28日14時頃、2号溶融炉において、硫黄酸化物濃度が要監視レベル(中間処理施設の運転状況の監視を強化しながら本来の性能を発揮させる改善対策を実施するレベル)を超えました。

この原因については、投入された廃棄物等に、硫黄分が多く含まれていたことによるものと 思われます。

<修復作業の内容>

燃焼空気、バーナー油量を調節し、処理量を落とすと共にガス冷却塔出口温度を下げて対応 しました。消石灰圧送ラインを点検し、正常なことを確認して消石灰吹き込み及び苛性ソーダ の噴霧を最大にしました。

<処理事業への影響>

このことによる処理の停止はありません。

<正式評価(分類)>

<暫定評価(分類)>

人身への影響

1. 問題なし

人身への影響	基準の逸脱等	事業進捗への影響
1. 問題なし	2. 軽度	1. 問題なし

⑧1号溶融炉の硫黄酸化物濃度が要監視レベルを超えた件について

<異常時緊急時等の通報内容>

平成29年6月29日15時頃、1号溶融炉において、硫黄酸化物濃度が要監視レベル(中間処理施設の運転状況の監視を強化しながら本来の性能を発揮させる改善対策を実施するレベル)を超えました。

この原因については、投入された廃棄物等に、硫黄分が多く含まれていたことによるものと 思われます。

<暫定評価(分類)>

人身への影響基準の逸脱等事業進捗への影響1. 問題なし2. 軽度1. 問題なし

評価レベル

<修復作業の内容>

燃焼空気、バーナー油量を調節し、処理量を落とすと共にガス冷却塔出口温度を下げて対応しました。消石灰圧送ラインを点検し、正常なことを確認して消石灰吹き込み及び苛性ソーダの噴霧を最大にしました。

<正式評価(分類)>

人身への影響	基準の逸脱等	事業進捗への影響
1. 問題なし	2. 軽度	1. 問題なし

<処理事業への影響>

このことによる処理の停止はありません。

(参考)

運用方針(評価(分類)の流れ)

- ① 緊急時等の発生
- ② 請負事業者等は、直島環境センターに報告する。
- ③ 請負事業者等からの報告などに基づき、直島環境センターは、次の評価(分類)基準表により、速やかに緊急時等の暫定評価(分類)を行い、その結果を付して関係者に連絡する。
- ④ また、技術アドバイザーに状況を報告し、指導・助言を得る。
- ⑤ 直島環境センターは緊急時等への対応が終了した時点で、必要に応じ暫定評価(分類)を見直し、正式評価(分類)を行い、豊島廃棄物等管理委員会に報告する。

評価(分類)基準表

【豊島】

評価	人身~	- の影響	基準の逸脱等	事業への影響		
レベル	暫定評価	正式評価	基準り定航寺 			
3	緊急搬送したもの	入院加療を要したもの以上	管理基準値を超過したものが豊島処分地外 への流出	中間処理施設での溶融処理又は高温熱処 理が3日(72時間)を超えて停止		
2	緊急搬送等の対応を要しないもの	通院加療等を要したもの	設備の破損等 管理基準値の超過を確認(場外への流出なし)	中間処理施設での溶融処理又は高温熱処 理が3日(72時間)以内の範囲で停止		
1	影響がないもの	影響がなかったもの	基準を満足	影響がないもの及び中間処理施設での溶 融処理又は高温熱処理に影響しないもの		

【直島】

評価	人身への影響		甘油の海路が	市光・の影響
レベル	暫定評価	正式評価	基準の逸脱等	事業への影響
3	緊急搬送したもの	入院加療を要したもの以上	即時停止レベル超過雨水排水が管理基準を超過	溶融処理又は高温熱処理が3日(72時 間)を超えて停止
2	緊急搬送等の対応を要しないもの	通院加療等を要したもの	要監視レベル	溶融処理又は高温熱処理が3日(72時間)以内の範囲で停止スラグ品質低下によるスラグ再溶融の実施
1	影響がないもの	影響がなかったもの	基準を満足	影響がないもの及び中間処理施設での溶 融処理又は高温熱処理に影響しないもの

【輸送 (海上、陸上)】

評価	人身への影響		# wt o \ \ \ n \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	本业 6月/60g
レベル	暫定評価	正式評価	基準の逸脱等	事業への影響
3	緊急搬送したもの	入院加療を要したもの以上	海域への廃棄物、油の流出	中間処理施設での溶融処理又は高温熱処 理が3日(72時間)を超えて停止
2	緊急搬送等の対応を要しないもの	通院加療等を要したもの	海域への廃棄物、油以外(洗剤、物品等) の流出陸上での廃棄物等の飛散	中間処理施設での溶融処理又は高温熱処 理が3日(72時間)以内の範囲で停止
1	影響がないもの	影響がなかったもの	影響がないもの	影響がないもの及び中間処理施設での溶 融処理又は高温熱処理に影響しないもの

健康管理委員会の審議概要

第32回豊島廃棄物等処理事業健康管理委員会(以下「健康管理委員会」という。)を平成29年6月14日に開催したので、その審議概要等を報告する。

1 作業環境測定結果

第31回健康管理委員会(平成29年2月13日開催)以後の作業環境測定の結果について報告した。

個人暴露調査並びに石綿の調査については、すべて管理基準又は許容濃度を満たしていた。

常時監視のうち、4月のプラットホームにおける粉じん濃度が管理基準値を超過していた。

定期監視のうち、粉じんの測定結果及びダイオキシン類(以下「DXN」という。)の 換算結果については、溶融炉室及びロータリーキルンは第1管理区域と評価されたが、 プラットホームは第3管理区域であった。

混合地点における粉じん及びダイオキシン類の調査結果については、1 月実施分は管理基準を超過していたが、3 月実施分は管理基準を満たしていた。

この他の定期監視については、第1管理区分と評価され、又は管理基準を満たしていた。

2 離職時等健康診断結果

事業終了にあたり、作業員の健康状況を把握するため、離職もしくは異動前に、一般 健康診断及び特殊健康診断を受診してもらい、その結果を報告した。

なお、委員から、事業開始からこれまで、高度の中毒症状や大きな労災事故がなかったことの報告と、健康診断を受診した後は知識よりも行動することが重要であるとのご指導をいただいた。

3 ひやり・ハット等の報告

人身事故1件について、概要や対策を報告した。

4 今後の健康管理委員会

廃棄物等の掘削及び豊島側での均質化並びに陸上及び海上輸送が平成28年度に終了し、平成29年度の途中から中間処理施設の運転も終了する一方、豊島中間保管・梱包施設等の除去・除染及び解体・撤去が実施されるため、これに伴い、健康管理委員会の名称及び所掌事務が変更となることについて審議され、了承された。